
Overview	Peter	A	Noble	PhD				
	
December	16,	2023	Email:	panoble@gmail.com	
	
Convolutional	Neural	Networks	(CNNs)	are	commonly	used	for	image	classification	
tasks,	and	the	MNIST	dataset	serves	as	a	popular	resource	for	practicing	and	
comprehending	these	networks.	The	MNIST	comprises	60,000	handwritten	digits	
for	training	machine	learning	models	and	an	additional	10,000	digits	for	testing	the	
models	(Figure	1).	Introduced	in	1998,	the	MNIST	has	since	become	a	standard	
benchmark	for	various	classification	tasks.	Download	the	MNIST	PNG	files	to	your	
Desktop	from	this	site:	https://github.com/DeepLenin/fashion-
mnist_png/tree/master.	
	
Here	I	present	two	coding	projects:	Pytorch	CNN	and	C++	CNN.		Pytorch	was	used	to	
create	the	model	in	terms	of	architecture	and	generate	weights	and	biases,	and	the	
C++	program	uses	the	weights	and	biases	to	generate	output,	independent	of	the	
Pytorch	model,	so	that	it	can	be	implemented	elsewhere	(e.g.,	internet).	
	
	

	
Figure	1.		Examples	of	handwritten	digits	from	the	MNIST	data	set.	

Part	1.	Pytorch	code	
	
The	PyTorch	code	from	Jupyter	Notebooks	imports	PNG	images	previously	
downloaded	to	your	Desktop.	The	dataset	is	then	split	into	80%	for	training	and	
20%	for	testing.	The	images	are	processed	in	batches	of	32	PNGs	at	a	time.	The	
testing	images	are	saved	for	assessment	analysis.	The	Convolutional	Neural	
Network	(CNN)	is	trained	for	1	epoch	in	this	example,	with	64	filters	(adjustable	by	
the	user).	Once	training	is	complete,	the	model's	performance	is	evaluated	using	the	



testing	dataset.	Additionally,	I've	included	a	section	for	saving	the	weights	and	
biases	to	the	Desktop	to	develop	applications	outside	of	PyTorch.	
	
Pytorch	Modeling	Results		
	
1.	The	program	issues	a	statement	on	whether	the	Metal	Performance	Shader	(MPS)	
was	built	successfully	or	not.		MPS,	a	framework	by	Apple	for	iOS	and	MacOS,	is	
designed	to	accelerate	various	image	and	signal	processing	tasks	on	GPUs.	
Leveraging	parallel	processing	capabilities,	developers	can	achieve	high-
performance	computation	in	graphics,	image	processing,	and	machine	learning	
applications.	
	

	
	
2.	The	training	dataset	consists	of	48,008	files,	and	the	validation	dataset	comprises	
12,002	files.	

	
3.	For	demonstration	purposes,	the	program	is	set	to	run	1	epoch.	Users	are	
encouraged	to	increase	epochs	for	training	(e.g.,	10	epochs).	The	results	indicate	a	
loss	of	approximately	0.324	after	one	epoch.	

	
4.	The	program	saves	the	model,	including	architecture,	weights,	and	biases,	for	
later	use.	
	
5.	After	loading	the	validation	dataset,	the	program	calculates	the	accuracy	for	each	
digit.	The	overall	accuracy	for	the	model	trained	with	just	one	epoch	is	94.98%.	Digit	
5	exhibits	the	lowest	accuracy,	while	digit	1	has	the	highest.	
	
6.	In	the	final	part	of	the	Pytorch	program,	the	program	saves	the	weights	and	biases	
in	text	format,	facilitating	future	analyses.	These	can	be	used	to	build	the	model	in	
C++	or	MS	Excel.	
	

	
	



	
Part	1.	C++	code	for	modeling	CNN	
	
The	C++	program	called	‘cnn.cpp’	provides	an	understanding	of	how	CNN	Pytorch	
models	the	data.		The	Pytorch	program	uses	binary	images	from	the	MNIST	dataset,	
presumably	because	they	allow	faster	processing	than	text	images.			
	
For	the	C++	program,	we	need	to	implement	arrays	of	numbers	including	the	input	
array	(i.e.,	text	representation	of	image),	the	weights	and	the	biases,	and	the	kernels,	
which	are	used	to	represent	the	weights	of	in	the	form	of	2	by	2	arrays.		The	weights	
of	the	first	layer	(weights_0.txt)	are	fed	into	the	kernel	that	moves	across	the	image	
array	and	down,	one	pixel	at	a	time.				

	
	
Here	is	how	the	convolution	layer	works.		At	each	position,	the	corresponding	pixel	
intensity	is	multiplied	by	the	kernel	value.		
	
0	(input)	x	0	(kernel	weight)	=0	
0	(input)	x	1	(kernel	weight)	=0	
0	(input)	x	2	(kernel	weight)	=0	
0	(input)	x	3	(kernel	weight)	=0	
	
Therefore	the	output	equals	0	+	the	first	bias_0.txt.		If	the	value	is	<	0,	the	value	is	set	
to	0	by	the	Rectified	Linear	Unit	(ReLu)	activation	function.	Then	the	kernel	moves	
over	one	position	and	below	the	calculation.	
	
0	(input)	x	0	(kernel	weight)	=0	
0	(input)	x	1	(kernel	weight)	=0	
0	(input)	x	2	(kernel	weight)	=0	
1	(input)	x	3	(kernel	weight)	=3	
	
Therefore	the	output	equals	3	+	the	second	bias_0.txt.	If	the	value	is	<	0,	the	value	is	
set	to	0	by	the	ReLu	activation	function.	Then	the	kernel	moves	across	one	position.	



	
Converting	PNG	images	to	text	arrays.	ImageMagik	(https://imagemagick.org/)	
was	used	to	convert	PNG	files	to	PPM	files.		The	conversion	involved	three	steps.		
The	first	step	is	implemented	as	a	Unix	land	command:	
	
Convert	file_name.png		-compress	none	file_name.ppm	
	
The	next	steps	involve	implementing	a	C++	program	to	remove	the	first	three	lines	
of	the	PPM	file	that	contains	file	information,	specifically	type	(P3	or	P6),	width,	
height,	and	color	type	(BRGB).			
	
The	rest	of	the	file	is	a	pixel	array	of	width	x	height	with	pixel	intensities	ranging	
from	0	to	255.	There	are	three	colors	represented	in	the	array,	Red,	Green	and	Blue.		
The	C++	program	is	called	‘image_look.cpp’.		The	final	product	is	a	text	array	with	a	
specific	width	of	84	pixels	and	height	of	28	pixels.		In	the	example,	you	can	convert	
the	example	PNG	(77.png)	(which	represents	the	digit	2)	to	a	text	file	called	77.txt.	
	
The	complete	3-step	procedure	is:	
	
$	g++	image_look.cpp	–o	image_look						 	 //	compile	the	C++	program	
$	convert	77.png		-compress	none	77.ppm														//	convert	using	ImageMagik	
$	./image_look	77.ppm	77.txt																				 	 //	convert	ppm	to	text	array	
	
	
Pooling	Next,	the	outputs	are	pooled	to	the	maximum	value	of	the	outputs.		The	
maximum	value	of	the	first	4	outputs	(i.e.,	0,3,9,19)	is	19.		The	maximum	of	the	
second	outputs	(8,4,25,10)	is	25.	The	maximum	of	the	third	outputs	(21,37,6,7)	is	37	
and	the	maximum	of	the	fourth	output	(43,	16,8,	0)	is	43.		Therefore	the	final	pooled	
output	is:	19,	25,	37	and	43.		Each	of	these	values	will	be	multiplied	by	a	second	set	
of	weights	in	the	output	layer	(n=10	digits).		The	sum	of	the	pooled	output	
multiplied	by	the	weight_1.txt	for	each	digit	is	determined	and	the	biases_0.txt	are	
added.			
	
The	last	step	applies	Softmax	to	the	10	outputs	(one	for	each	digit).		The	Softmax	is	a	
mathematical	function	that	takes	a	vector	of	arbitrary	real-valued	scores	and	
transforms	them	into	a	probability	distribution.		
	

	
The	Softmax	function	essentially	maps	the	input	scores	to	a	probability	distribution,	
making	it	suitable	for	problems	where	the	goal	is	to	assign	an	input	to	one	of	
multiple	classes.	The	predicted	class	corresponds	to	the	index	with	the	highest	
probability.	



Assessment	of	shuffling	PNG	images	with	noise	on	model	performance.	
A	C++	program	called	‘add_shuffle.cpp’	was	devised	to	randomly	shuffle	pixel	
intensities	in	order	to	assess	the	effects	of	noise	on	the	model	accuracy.		The	models	
consisted	of	64	filters	that	underwent	100	epochs.		Figure	3	shows	that	model	
performance	drastically	declined	with	added	noise.	
	

	
Figure	3.		Effects	of	shuffling	pixel	intensities	of	model	performance	for	two	
independent	models.		

0	

20	

40	

60	

80	

100	

0	 5	 10	 15	 20	 25	

%
	C
or
re
ct
	

%	Noise	


