
Advanced	CNNs	using	color	images.	
	
Data:	The	Sugarcane	Leaf	Disease	Dataset	has	5	classes:	Healthy,	Mosaic	Redrot,	
Rust	and	Yellow	disease	captured	with	smart	phones	of	various	configurations.		
There	are	a	total	of	2522	images.		The	dataset	was	collected	in	Maharashtra,	India.		
Image	sizes	are	not	constant,	and	all	images	are	in	RGB	format.			
	
First	attempt.		
	
2522	images	were	used	for	training/testing.	The	file	was	split	to	1765	training	and	
757	testing.	
	
The	model	called	“SugarCane.ipynb”	(sugarcane.pdf)	consisted	of	a	simple	model	
with	32	channels	in	the	first	layer,	a	kernel	size	of	2	x	2,	and	an	image	size	of	244	x	
244	units.		Figure	1	(left	and	right)	shows	the	training	accuracy	and	loss	for	10	
epochs.		Figure	1	(left)	shows	that	the	accuracy	with	this	model	plateaus	at	about	
70%	for	the	validation	data.		The	overall	accuracy	for	classify	the	data	was	72.1	%.			
	
	

	
Figure	1.		Training	and	testing	results	for	Sugarcane	model	1.	

	



	
Second	attempt.	
	
To	determine	how	to	improve	the	predictive	model,	I	investigated	EfficientNet,	
which	is	a	pre-trained	model	based	on	compound	scaling.		It	tackles	trade-offs	
between	model	size,	accuracy	and	computational	efficiency.			
	

	
Figure	2.		Model	scaling	and	architecture.		EfficientNet	(far	right)	is	a	
compromise	between	going	deeper	and	wider.		Model	1	was	similar	to	
baseline.		The	compound	scaling	is	shown	on	the	far	right	and	based	on	the	
paper	by	Tan	and	Le	(2019)	entitled:	“EfficientNet:	Rethinking	model	scaling	
for	convolutional	neural	networks	(https://arxiv.org/abs/1905.11946).		

	
What	makes	EfficientNet	different	from	my	model	1	is	that	it	is	composed	of	9	layers	
while	I	only	used	2.		Would	increasing	the	number	of	layers	improve	classification	
accuracy?	
	
Results	indicated	better	prediction	accuracies	with	EfficientNet	presumably	because	
it	uses	8	CNN	layers	(Figure	3	and	4).			I	improved	upon	model	1	by	increasing	the	
number	of	layers	from	2	to	8.		I	also	included	Batch	normalization.		Batch	
Normalization	is	a	technique	used	in	deep	neural	networks	to	normalize	the	inputs	
of	each	layer	in	a	mini-batch.	It	helps	improve	the	training	stability	and	speed	by	
normalizing	the	input	to	a	layer	so	that	it	has	a	mean	close	to	zero	and	a	standard	
deviation	close	to	one.		Prior	to	sending	the	images	to	the	CNN,	I	transformed	the	
images	by	resizing,	center	cropping,	and	rotating	them	(see	Jupyter	notebook	
script).		I	also	split	the	files	into	training	(n=1764),	validation	(n=504)	and	testing	
(n=253)	files.	
	



	
Figure	3.	Training	and	validation	accuracy	and	loss	for	EfficientNet	using	
TensorFlow.		Accuracy	is	much	better	using	8	layers!	

	

	
Figure	4.		Confusion	matrix	for	EfficientNet.	



	
Third	attempt.	Sugarcane	Model	2	with	8	layers.	
	
Figure	5	shows	that	prediction	accuracy	of	the	validation	data	was	much	improved	
over	model	1	and	similar	to	the	EfficientNet	results.		The	confusion	matrix	(Figure	
6)	shows	a	breakdown	in	predictions	by	group	label.		Overall,	the	prediction	
accuracies	were	similar	to	the	EfficientNet	results.	Figure	7	shows	the	confusion	
matrix	for	the	validation	data	set	(87%),	which	is	somewhat	lower	than	the	
EfficientNet.		Figure	8	shows	the	activation	statistics	in	terms	of	mean	and	variance.		
While	there	are	elevated	activations	in	the	5	to	12	layers,	most	of	the	variance	in	the	
activation	occurs	in	the	last	layer.		Figure	9	shows	the	configuration	of	the	model	
based	on	layers.		Recall	that	each	color	(RGB)	has	its	own	layer.	Figure	10	shows	the	
ordination	plot	of	all	layers.		Apparently,	the	last	layer	plays	the	most	important	role	
in	the	predictions.		The	complete	analyses	can	be	seen	in	the	Final_sugarcane	
jupyter	notebook	(here).	
	
	

	
Figure	5.		Model	2	yielded	better	predictions	than	Model	1	presumably	due	to	
8	layers,	resizing,	rotation,	cropping,	and	batch	normalization.	



	
Figure	6.	Confusion	matrix	for	test	data	using	Model	2.		Test	accuracy	was	
92%.	The	test	data	set	was	not	used	in	training	the	model.	

	
Figure	7.		Confusion	matrix	for	validation	data	using	Model	2.	Validation	
accuracy	was	87%.	The	validation	data	set	was	used	in	training	the	model.	

	



	
Figure	8.		Activation	layers	for	model	2.		See	figure	9	for	layer	configuration.	

	



	
Figure	9.	Configuration	of	layers	in	model	2.		First	number	is	layer,	second	
number	corresponds	to	padding,	third	number	corresponds	to	number	of	
channels,	fourth	and	fifth	corresponds	to	kernel	size.	

	
	
	



	
Figure	10.	Ordination	plot	showing	that	most	of	the	variance	is	in	the	first	
component	and	last	layer	(98%).	


