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Real-time Monitoring of Urinary Stone 
Status During Shockwave Lithotripsy
Peter A. Noble

OBJECTIVE To develop a standardized, real-time feedback system for monitoring urinary stone fragmentation 
during shockwave lithotripsy (SWL), thereby optimizing treatment efficacy and minimizing 
patient risk.

METHODS A 2-pronged approach was implemented to quantify stone fragmentation in C-arm X-ray images. 
First, the initial pre-treatment stone image was compared to subsequent images to measure stone 
area loss. Second, a Convolutional Neural Network was trained to estimate the probability that 
an image contains a urinary stone. These 2 criteria were integrated to create a real-time signaling 
system capable of evaluating shockwave efficacy during SWL.

RESULTS The system was developed using data from 522 shockwave treatments encompassing 4057 C-arm 
X-ray images. The combined area-loss metric and Convolutional Neural Network output en
abled consistent real-time assessment of stone fragmentation, providing actionable feedback to 
guide SWL in diverse clinical contexts.

CONCLUSION The proposed system offers a novel and reliable method for monitoring urinary stone frag
mentation during SWL. By helping to balance treatment efficacy with patient safety, it holds 
significant promise for semi-automated SWL platforms, particularly in resource-limited or re
mote environments such as arid regions and extended space missions. UROLOGY xx: xxx– 
xxx, xxxx. © 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, 
AI training, and similar technologies.   

U rinary stones can cause intense pain by ob
structing urine flow and irritating the urinary 
tract lining, potentially leading to bleeding, 

infection, or other complications if left untreated. 
Shockwave lithotripsy (SWL) uses high-energy shock
waves to fragment stones into smaller pieces (< 4 mm) 
that can pass naturally.1,2 During treatment, patients 
typically undergo 5-25 shockwave applications, each 
generating shockwaves and a corresponding C-arm X-ray 
image. A fluoroscopy machine, featuring a C-shaped arm 
that connects the X-ray source to the detector, enables 
real-time dynamic imaging of internal structures during 
SWL and produces the X-ray images.

Determining the optimal point to stop SWL treatment 
is challenging. SWL operators generally follow a pre
defined protocol, delivering approximately 2000-3000 
shockwaves per session, depending on factors such as 
stone size, composition, location, and the patient’s con
dition. Delivering insufficient shockwaves may leave 
stones inadequately fragmented to pass out the body, 

while excessive shockwaves risk tissue damage and 
complications such as hematoma. Variations in stone 
size, composition, and location further complicate frag
mentation assessment. Stones are initially visible in 
imaging, but as they fragment, smaller pieces disperse 
into a cloud and blend into the background,3 reducing 
visibility in C-arm images.4 Current imaging systems 
cannot reliably determine when fragmentation is com
plete,5,6 making it difficult to stop treatment based on 
visual cues. No reliable metric exists to compare initial 
and fragmented stone areas after each application. A 
system that quantifies stone area changes and provides 
real-time feedback to operators could improve treatment 
efficiency and reduce complications while balancing 
fragmentation goals with patient safety.

Artificial intelligence (AI) is transforming medicine 
by enhancing diagnostics, personalizing treatment, and 
improving patient outcomes through advanced data 
analysis and pattern recognition. AI utilizes artificial 
neural networks, including Convolutional Neural 
Networks (CNNs), designed to analyze images and per
form tasks such as object recognition. CNNs could be 
used to distinguish urinary stones in X-ray images from 
other structures, such as bones. These models learn from 
data, enabling predictions without explicit task-specific 
programming. In urology, AI has been used to predict 
lithotripsy outcomes,7,8 detect kidney stones in videos9
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and images,10-15 predict sepsis risk,16,17 and optimize li
thotripsy outcomes18-20 and SWL machine parameters.21

The objective of the study was to develop an approach 
that provides real-time status updates on urinary stones 
during SWL based on thousands of stone images col
lected during treatments. The approach compares the 
initial stone area with its current area after each shock
wave application, calculates the probability that the 
object in the image is a stone, and uses a signaling system 
to notify the operator of the stone’s status. To our 
knowledge, this is one of the first signaling systems de
veloped for monitoring urinary stone fragmentation 
during SWL.

MATERIALS AND METHODS
Ethics Statement
The research relied on the analysis of anonymized X-ray 
data accessed through the publicly available “Kidney 
Stone Registry” (https://bit.ly/4cQSIIZ). The Kidney 
Stone Registry is a global clinical database that provides 
anonymized patient information (eg, age, Body Mass 
Index), treatment parameters (settings used to fragment 
stones), and X-ray images of SWL and laser ureteror
enoscopy treatments. The purpose of the database is to 
provide data to medical researchers so they can de
termine best practices and trends through analytics and 
statistical analysis with the long-term goal of improving 
patient outcomes and experiences. The dataset lacked 
identifiable information, ensuring no possible linkage to 
personal data. The study was conducted as a retro
spective analysis of anonymized records, in accordance 
with standard ethical guidelines for secondary use of 
clinical data.

Electronic Medical Data
The C-arm X-ray dataset consisted of 11,648 images, 
along with information on stone location and size, col
lected from patients who underwent SWL at multiple 
sites across the United States between April 21, 2022, 
and May 5, 2022. The images were generated using 
various shockwave instruments, including the Dornier 
Compact Delta II and III, Dornier Compact Sigma, Storz 
F2, and Storz SLX-T, all operated by experienced phy
sicians/operators.

Software Development
The software developed in this study was run on a 
MacBook Pro with an Apple M2 Max chip, 32 GB of 
memory, and the macOS Sequoia 15.1.1 platform. The 
following libraries were utilized: OpenCV, OpenMP, and 
Standard C++.

Stone Probability Calculator
A stone image dataset was created using a custom-de
signed program, which draws a 50 × 50 pixel green box 
around a stone and exports the cropped stone image to 

an external folder after the user clicks on a stone in the 
image (Supplementary Fig. 1). An initial screening of the 
X-ray images yielded 4621 stone images and 4621 non- 
stone images. Further curation to remove ambiguous 
images resulted in a final dataset of 2804 stone images 
and 2804 non-stone images (examples are shown in 
Supplementary Fig. 2).

Preprocessing, training, testing, and validation of the 
data were conducted using PyTorch version 2.2.2 in 
Jupyter notebooks. The preprocessing step converted the 
images to RGB format and applied random horizontal 
and vertical transformations to ensure model robustness. 
These transformations simulate variations in orientation 
and perspective, improving the model’s ability to gen
eralize to real-world scenarios. The preprocessed data 
were then randomly split into 3 sets: 70% for training, 
15% for testing, and 15% for validation.

The CNN model processes the input through convolution 
layers, which detect features such as edges and patterns using 
filters. Each subsequent layer captures increasingly complex 
details, with the first layer using 32 filters, followed by 64 in 
the second, 128 in the third, and 256 in the fourth. After 
each convolution, pooling layers are applied to down-sample 
the spatial dimensions of the feature maps using max pooling 
with a 2 × 2 kernel size, a stride of 1, and padding of 1. This 
reduces the computational load and helps the model gen
eralize better. After pooling, the data are flattened, trans
forming the multi-dimensional feature maps into a 1- 
dimensional vector. This vector is then passed through fully 
connected layers, which progressively condense and simplify 
the features into 2 final digital outputs: stone (1) or no stone 
(0). In this study, a probability of greater than or equal to .5 
was considered a stone and a probability less than .5 was not 
considered a stone.

The model was trained for 70 epochs, with an early 
stopping mechanism that halts training when there is little 
improvement in the outputs from the validation dataset. A 
confusion matrix and area-under-the curve (AUC) were 
used to evaluate the performance of both the testing and 
validation sets. Library (pROC) in the R-program 4.1.2 was 
used to calculate AUC. The weights and biases of the 
CNN model were exported as binary files for use in building 
a compiled application (ie, the CNN_images module).

Monitoring Stone Fragmentation During SWL
Two processes are involved: selecting the stone to be 
fragmented and monitoring the stone fragmentation 
during SWL.

Selecting the Stone. A program called “select_stone” 
identifies the stone of interest in the initial 640 × 480 
image. The program provides real-time stone probabilities 
through the CNN_images module, which was integrated 
into the software (Fig. 1). Once the stone is marked, the 
probability is displayed on the screen, and the 50 × 50 image 
of the boxed stone is stored in a folder for comparison with 
other boxed images.
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Monitoring Stone Fragmentation. The find_stone application 
compares the initial box stone image (eg, Stone_1.png) to 
box images of the same size within the larger image 
representing the C-arm X-ray. Scanning is performed 
within the region of interest and progresses 1 pixel at a 
time across and down the current image (Supplementary 
Fig. 3). The box image with the highest R2 value for the 
match is retained, and the probability match is a stone 
calculated by the CNN_image module.

The R2 value for matching the initial boxed stone image 
to a subsequent boxed image is determined using OpenCV’s 
template matching function, CV_TM_CCOEFF_ 
NORMED, which computes the normalized cross-correla
tion coefficient. This coefficient is normalized to ensure the 
results are not affected by lighting conditions or pixel in
tensity variations, making the method more robust to 
changes in brightness or contrast between the template and 
the image. Coefficient values range from −1 to 1, with higher 
values indicating a better match. The results are squared, and 
the highest value is retained as the R2 value for the match, 
which represents the percentage variability explained by the 
match.

Stone area of the best match is estimated by multi
plying the initial stone area by the R2 value of the match. 
The initial stone area is determined by the height and 
width of the original stone and the shape of the stone 
assumed to be elliptical using the formula:  

Stone area = (width/2) × (height/2) × 3.14.                                 

For example, a stone with a width = 8 mm and height 
= 12 mm would have an initial area of (8/2) × (12/ 
2) × 3.14 = 75.4 mm2. The stone area of the fragmented 
stone was determined by the initial stone area multiplied 
by the R2 of the match between the initial stone and the 
fragmented stone. If R2 = 0.57 (which represents a 43% 
stone loss) for the match between the initial stone and 

the fragmented stone, the fragmented stone would have 
an area of 75.4 × 0.57 = 42.8 mm2.

Arbitrary thresholds were set for the percentage of stone 
loss and stone probability. If the percentage of stone loss 
exceeded 75%, meaning the normalized cross-correlation 
coefficient of the match was <  ± 0.5 or the stone probability 
was < .5, the stone was reported as not found.

A signal notification system was developed using the 
relationship between the area of the initial stone images 
and the smallest area of the stone image (representing 
the largest stone loss) attained during the shockwave 
treatment with a runtime of about a second.

RESULTS
Stone Probability Calculator
After 52 of the 70 possible training epochs, a regular
ization technique was triggered to early stop, thus pre
venting over-fitting and improving model performance. 
Supplementary Figure 4 shows the convergence of the 
training and validation datasets over the epochs. The 
confusion matrices revealed overall accuracies of 0.96 for 
the validation dataset and 0.94 for the test dataset 
(Supplementary Tables). AUC analyses revealed overall 
scores of 99.2% for the validation dataset and 98.7% for 
the test dataset (Supplementary Fig. 5). These results are 
consistent with the concept that the outputs can accu
rately predict whether an image contains a stone or not. 
The compiled application was called CNN_images and 
integrated as a module to subsequent programs. The 
runtime for the compiled module was less than 5 ms.

Model Development
Stone selection: To select a stone or stones in the C-arm 
image, the “select_stone” application was used. This 
application features a hovering box that displays stone 

Figure 1. Screenshots of the select_stone application used to extract a PNG image of the stone. (A) A magnified green box 
highlights the stone, with the hovering stone probability displayed. (B) The top-right inset shows the saved image Stone_1.png, 
with a stone probability of 100%. The saved Stone_1.png will serve as a template for comparing stone images after each 
shockwave application. 
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probabilities in real time (Fig. 1). The operator clicks the 
mouse to place a 50 × 50 green box around the stone 
with the highest probability. The selected image is then 
saved and automatically compared to all subsequent 
stone images generated during the shockwave treatment.

Signal Notification System. The signal notification system 
was developed based on the relationship between the 
area of the initial boxed stone images and the areas of 
boxed stone images captured during shockwave 
treatments from 522 patients. The initial stone sizes 
had an average area of 80.1 mm2 with a standard 
deviation of 90.0 mm2. Most stones were located in the 
kidneys (85%), with the remainder in the ureters (15%).

Data points representing the areas of initial boxed 
stone images produced a line of equality (Supplementary 
Fig. 6). The distribution of data shows that stones with 
larger initial areas are associated with greater variation in 
stone size during shockwave applications. This finding 
suggests that more shockwaves are required to fragment 
larger stones.

The predicted final stone area (represented by the red 
regression line) was determined based on the stone image 
with the highest percentage loss relative to the initial 
stone image during a treatment. The regression equation 
was: predicted final stone area = 0.45 × initial stone area 
+ 1.65, with an R2 value of 0.84. The R2 value indicates 
that the equation accounts for 84% of the variability in 
the data.

A signal notification system was developed using the 
regression equation and the 90% confidence interval 
(CI) (Supplementary Fig. 7). The signal is green for 
stone areas smaller than the lower boundary of the CI, 
indicating it is safe for the operator to continue deli
vering shockwaves to the stone. The signal is yellow for 
stone areas greater than the lower boundary but smaller 
than the upper boundary of the CI, indicating the op
erator should proceed with caution in delivering shock
waves. The signal is red for stone areas greater than the 
upper boundary of the CI, indicating that the maximum 
stone area loss has been achieved and shockwaves 
should stop.

Testing the Signal Notification System
The notification system was tested on 251 treatment 
samples, yielding the following results: 86 treatments 
(34%) yielded green signals only (Supplementary Image 
Files 1), 73 treatments (29%) yielded green and yellow 
signals (Supplementary Image Files 2), 27 treatments 
(11%) yielded green and red signals (Supplementary 
Image Files 3), and 65 treatments (30%) yielded green to 
red colors (Supplementary Image Files 4). Treatments 
yielding only green signals suggest that the stone may not 
have been adequately fragmented and/or that the stone 
was too hard to break. Treatments yielding green to 
yellow signals indicate that the stone was fragmented to 
the predicted final stone area. Treatments with green and 

red signals (but not yellow) suggest that not all stone 
images were captured during the treatment. Treatments 
yielding green, yellow, and red signals suggest that the 
stone was fragmented beyond the predicted final 
stone area.

Figure 2 shows 6 images in sequential order for one 
treatment session. The 11 mm by 11 mm stone was lo
cated in the Ureteral Pelvic Junction. Panel A serves as a 
control, with 0% stone loss and stone probability of 1. 
The top-right inset shows the initial stone, while the 
lower-right inset shows the current stone within the 
green box in the middle of the larger image. Panel B 
shows the images after shockwave application, with 
38.1% stone loss. Subtle differences can be observed 
between the top- and bottom-right inset images. The 
notification signal has shifted to yellow in Panels C-E 
display stone losses of 52.7%, 53.2%, and 56.0%, re
spectively. The notification signal in Panel F is red, in
dicating that to stop shockwave delivery as stone loss 
reaches 56.1%. Note that it is visually difficult to see the 
stone in the image but the stone probability = 1, in
dicating fragments are visible by the CNN.

Supplementary Figure 8 shows 6 images in sequential 
order for another treatment session. The 10 mm by 10 
mm stone was located in the mid-Calyx. Panel A serves 
as a control, with 0% stone loss and a stone probability of 
1. Panels B-D show the images after shockwave appli
cation, with stone losses of 34.8%, 35.2%, and 43.3%, 
respectively. In panel E, the signal notification system 
turns yellow as stone loss reaches 51.9%. Panel F shows 
the system turning red, signaling the operator to stop 
shockwave delivery as stone loss reaches 59.8%. Similar 
to Figure 2 panel F, the stone probability = 1 because the 
CNN_image module detects stone fragments.

Supplementary Figure 9 shows 6 images in sequential 
order for a third treatment session. The 9 mm by 9 mm 
stone was located in the upper Calyx. Panel A serves as a 
control, with 0% stone loss and a stone probability of 1. 
Panels B and C show images after shockwave applica
tion, with stone losses of 37.2% and 42.9%, respectively. 
Panels D and E show the notification system turning 
yellow as stone losses reach 51.9% and 54.5%, respec
tively. Panel F shows the system turning red, signaling 
the operator to stop shockwave delivery as stone loss 
reaches 59.1%.

The results of the signal notification system testing 
demonstrate its ability to accurately track and indicate 
the progression of stone fragmentation during treatment. 
The system successfully identified varying levels of stone 
loss, with distinct color signals corresponding to specific 
thresholds of R2 of the match and stone probability.

The images from the treatment sessions (Fig. 2, 
Supplementary Figs. 8 and 9) further validated the 
functionality of the notification system that corre
sponded to observable changes in stone loss and frag
mentation. As stone loss increased, the system 
transitioned from green to yellow, indicating caution, 
and ultimately to red, signaling the need to stop 
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shockwave delivery to prevent possible complications. 
These findings underscore the potential of the notifica
tion system to enhance treatment precision, offering 
valuable guidance for operators to optimize stone frag
mentation and minimize complication risks.

DISCUSSION
Various techniques have been used to quantify urinary 
stones, each with unique strengths and limitations. High- 

resolution computed tomography22,23 and kidney-ureter- 
bladder X-rays24 effectively estimate the stone area be
fore SWL but are impractical for real-time monitoring 
during treatment. Ultrasound imaging provides con
tinuous monitoring and is effective for detecting radi
olucent stones25; however, its resolution can be limited 
and highly operator-dependent.26 Fluoroscopy, which 
generates real-time C-arm X-ray images, enables visua
lization of stones during SWL but exposes patients to 
ionizing radiation and has limited sensitivity for de
tecting radiolucent stones.6

Figure 2. Composite of sample 4_52 showing stone fragmentation. The top-right image shows the original boxed stone for 
comparison, while the lower-right images display the current boxed stone. Stone loss progressively increases from Panels (A)- 
(F). Panels (A) and (B) depict fragmentation with a green signal. Panels (C)-(E) depict a yellow cautionary signal. Panel (F) 
depicts a red signal, indicating that shockwaves should stop. 
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Fluoroscopy was used in this study because it re
presents the most feasible option for developing real-time 
metrics to assess stone fragmentation during SWL. This 
approach is not applicable to computed tomography 
scans, which are not collected in real time, nor to ul
trasound imaging, due to unavailable data for testing.

Visual observation alone does not sufficiently convey 
shockwaves impact on the stone. For example, an op
erator cannot accurately determine how much a stone 
has been fragmented after a specific application of 
shockwaves solely by visually comparing the first image 
to the current image. The new metric helps operators 
evaluate the effectiveness of shockwaves on the stone 
and establishes a foundation for AI-guided, automated 
SWL systems capable of operating in remote settings (see 
Future Innovations). To our knowledge, this is the first 
study to propose a metric for measuring changes in stone 
area during treatment and a signal notification system to 
support operators during SWL sessions.

The 2-pronged approach combines the R2 value of the 
match between the initial boxed image and the current 
box and stone probability. The R2 value of the match is 
used to locate the stone of interest within the larger 
image and provide information on SWL effectiveness in 
terms of stone fragmentation (ie, stone loss). The 
CNN_image module determines whether the boxed 
image contains a stone. Notably, this module operates 
independently of the R2 match and provides information 
on the presence of a stone regardless of whether it is 
whole or fragmented. That is, even if the stone is frag
mented into tiny grains, the stone probability could still 
exceed .5. Combining the R2 value of the match with the 
stone probability significantly enhances accuracy, as de
monstrated by the examples in this study.

The signal notification system, based on the distribu
tion around the regression line representing the smallest 
stone areas relative to the initial stone areas, provides a 
generalizable guideline for operators. This system could 
be further enhanced by incorporating data from thou
sands of ongoing SWL treatments using the programs 
developed in this study.

Strengths and Limitations
The strength of this study lies in its broad applicability: 
the models were based on treatments conducted across 
multiple institutions by various medical professionals 
using different SWL instruments, ensuring the results are 
generalizable beyond a single institution, professional, or 
instrument. Since all SWL treatments in this study were 
conducted in adherence to the guidelines set by the 
American Urological Association and European 
Association of Urology, the new metrics are inherently 
aligned with these established standards.

One limitation of this study is its retrospective design, 
which may have introduced biases and reduced the 
predictive accuracy of the models. For example, the lack 
of time stamps on SWL session images made it chal
lenging to determine the exact sequence of events. The 

order of images was inferred through visual inspection, 
potentially introducing human error. Incorporating time 
stamps for each image captured after a shockwave ap
plication would significantly enhance the accuracy and 
reliability of the models.

Another limitation stems from the possibility that 
operators did not consistently include all images from a 
treatment session in the data provided. This selective 
image capture could omit crucial data points, potentially 
skewing the model’s predictions. An automated system 
for recording images after each SWL application would 
not only standardize data collection but also improve the 
robustness and predictive power of the models. 
Prospective studies could address these limitations and 
enhance the findings further.

Of note, the R2 value derived from the normalized 
cross-correlation coefficient accounts for changes in the 
stone’s orientation caused by patient movement or 
shockwave-induced shifts. While this method does not 
account for changes outside the 2-dimensional imaging 
plane or the green box, multiplying the R2 value by the 
initial stone area serves as a proxy for the current stone 
size. Although this proxy offers valuable insights, it may 
not fully reflect the actual stone size due to the resolution 
limitations of C-arm X-rays in capturing fine fragmen
tation details.

While this study focused on fluoroscopic imaging, 
applying the same methodology to ultrasound images 
could offer significant advantages, including lower ra
diation exposure and improved detection of radiolucent 
stones. However, feasibility depends on the availability 
of consistent, high-resolution ultrasound data during 
SWL, which I am actively investigating for future work.

Future Innovations
Real-time monitoring of stone status during shockwave 
treatment is crucial for developing a semi-automated, 
computer-assisted SWL system. By integrating stone 
status with key shockwave parameters—such as power 
level, shock rate, and shock counts—AI-driven systems 
could optimize shockwave applications in real time. A 
previous study predicting future shockwave parameters 
from past data21 lacked this critical input, with stone 
status serving as the missing link to fully enable this 
advanced approach.

The need for such innovation is underscored by the 
rising global incidence and prevalence of kidney stones, 
likely driven by dietary practices and climate change.27

In the United States alone, approximately 11% of the 
population will experience kidney stones during their 
lifetime.28 Developing a semi-automated and standar
dized SWL approach will be essential for addressing this 
growing burden, particularly in challenging environ
ments such as remote settings (eg, arid deserts) and space 
exploration. Specifically, extended spaceflight results in a 
urinary environment saturated with stone-forming salts, 
increasing the risk of stone formation.29,30 In such sce
narios, where access to highly trained urologists is 

6 UROLOGY xx, xxxx



limited, a technician- and AI-guided system could au
tonomously perform SWL, reducing treatment compli
cations and costs. This approach would ensure effective 
urinary stone management under extreme conditions, 
safeguarding both health and mission success.
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