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Abstract
Microarray technology, which has been around for almost two decades, now provides an indispensable service to
the biomedical research community. Soaring demand for high-throughput screening of genes potentially associated
with cancer and other diseases, as well as the increased need for identifying microorganisms, have substantially
opened up the application of this technology to many fields of science, including new ones such as array-based
comparisons of whole genomes.Yet, despite this significant progress, the fundamental understanding of the pillars of
this technology, have been largely unexplored, in particular for oligonucleotide-based microarrays. In fact, most of
the current approaches for the design of microarrays are based on ‘common-sense’ parameters, such as guanine-
cytosine content, secondary structure, melting temperature or possibility of minimizing the effects of nonspecific
hybridization. However, recent experiments suggest that these are inadequate. Here we discuss these results, which
challenge the basic principles and assumptions of oligonucleotide microarray technology. It is clear that
more systematic physicochemical studies will be required to better understand the hybridization and dissociation
behaviour of oligonucleotides.
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INTRODUCTION
DNA microarrays are regarded as an enabling

technology because they allow scientists to address

previously intractable problems and to uncover

potentially novel gene targets, perhaps those under-

lying genetic causes of many human diseases [1].

They are also applicable to many other areas of

biomedical science, including biological defense, and

environmental monitoring. The utilization of micro-

array technology has significantly increased since

1995, with the largest increase in gene expression

studies, and to a lesser extent, microbial identification

(Figure 1).

Two array platforms are currently used: glass [2–6]

and microfluidic station [7–9]. In addition, several

platforms are currently under development:

microbead [10, 11], electronic [12–14], cantilever

arrays [15] and surface plasmon resonance arrays [16].

These platforms share the common attribute that a

sensor detects a signal from target sequences

hybridized to immobilized oligonucleotide probes.

The intensity of this signal provides a measure of the

amount of bound nucleic acids in a sample, which

mostly depends on probe-target binding affinities

and the concentration of nucleic acid in solution.

All microarray experiments rely upon probe

specificity and probe sensitivity, and a unifying

algorithm that interprets the multiple signals

coming from array probes. Probe specificity is of

particular importance because one has to be able to

adequately distinguish between closely related

nucleic acid targets, which may differ by only a

few nucleotides. The oligonucleotide probes must

possess adequate sensitivity to nucleic acid targets
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in order to provide a high signal-to-noise ratio, else

the signal will be drowned by background noise.

Also, an adequate relationship between target con-

centration and observed signal must exist in order to

detect target fold changes upon different treatments.

The image acquisition and array software is the

integrative component of a microarray experiment

because it not only interprets signal from multiple

probes that vary in terms of their specificities and

sensitivities, but it also plays a pivotal role in calling

and/or quantifying a gene target, or several gene

targets, within a pool of potentially similar targets.

Recent advances in physicochemistry experi-

ments reveal major problems with the principles of

probe design and associated software as well as the

meaning of probe specificity in mixed target samples.

These problems cast doubt on the downstream

interpretation of algorithms used to detect and

quantify gene transcripts in biological samples

having multiple targets present simultaneously.

These findings might also help explain some of the

concerns raised by researchers about the repeatability,

reproducibility and comparability of microarray

technologies [17–19], especially when their results

are compared to those of conventional approaches

[20]. Comparison of gene expression measurements

across different microarray platforms has recently

shown that although highly expressed genes yield

consistent results, low expression genes remain a

major problem [21]. Two-dye platforms might

potentially be more tolerant to artefacts, such as

sticky oligonucleotides, since those artefacts should

be in a two-dye platform. However, this expectation

was not confirmed in the respective comparative

studies [21, 22]. For these reasons, we focus this

article on single-dye platforms. Moreover, single-dye

platforms offer much more flexibility for biological

studies since they allow the possibility to study gene

expression dynamics resulting from multiple treat-

ments compared to two-dye platforms, which mostly

assess up and down regulation between a control and

a single treatment.

Subsequently, we discuss recent developments in

the understanding of probe specificity and probe

sensitivity, and the challenge of interpreting array

data using existing approaches. These developments

will be placed in the perspective of physicochemistry

in order to help elucidate the link between the

observed (raw) signals on an array and their

biological meaning.

ARRAY PROBEDESIGN
In this section, a brief survey of available probe

design approaches is presented. In the next section,

we will show that a critical evaluation of these

approaches is needed since predicted signal intensities

of probes are poorly correlated to what is actually

observed.

Earlier work suggested that high specificity probes

could be designed by following simple rules [23]. For

example, if the composition of target and nontarget

sequences was known in a sample, the probes should

be designed to have <75% sequence similarity to

nontarget sequences, and in the case of marginal

similarity between target and nontarget sequences,

Figure 1: Histogram of publications by time for gene expression (left panel) andmicrobial identification (right panel)
array studies based on citations from theWeb of Science.

142 Pozhitkov et al.
 at A

labam
a S

tate U
niversity on M

arch 8, 2011
bfg.oxfordjournals.org

D
ow

nloaded from
 

http://bfg.oxfordjournals.org/


the probes should be designed to have less than

15 contiguous (complementary sequence) bases.

Problems with this approach are: (i) that one often

does not know the composition of nontarget

sequences in a sample, so it is not possible to

determine the degree of similarity nor the number of

contiguous bases; and (ii) that a comprehensive study

that analysed 13 independent hybridizations to high

densities arrays revealed that neither simple nor

advanced rules were sufficient to successfully predict

hybridizations [6].

An alternative probe design approach is to predict

duplex formation by their thermodynamic properties

[24–26]. Although duplex formation has been

established for nucleic acid targets in solution [27,

28] by the nearest-neighbor model [29], duplex

formation on surface-immobilized DNA oligonu-

cleotides is less well understood, presumably due to

the complex factors affecting the kinetics and

thermodynamics of target capture. Some factors

affecting duplex formation on DNA microarrays

include: probe density, microarray surface composi-

tion, and the stabilities of oligonucleotide–target

duplexes, intra- and inter- molecular self-structures,

and RNA secondary structures [30–32].

To better understand the contribution of various

factors to duplex formation, Matveeva et al. [30]

proposed that hybridization on an array can be

explained by several overlapping processes which

include (i) the affinity of a target to bind to a probe,

(ii) the formation of stem-loop structures of a probe,

(iii) the formation of secondary structure (loops and

helices) of a target and (iv) probe-to-probe dimer-

ization (Figure 2), with each process characterized by

its own Gibbs free energy value. In the case of

increased binding for process (i), one would expect

signal intensity of a duplex to increase, while in the

case of increased binding for processes (i) to (iv), one

would expect signal intensity to decrease because

either the target or probe are involved in side

reactions that do not contribute to duplex formation.

It should be noted that in addition to thermo-

dynamic prediction, various models have also been

examined to account for observed signal intensity

based on probe-target binding affinities. For exam-

ple, we have previously proposed a probabilistic

ad hoc model that selects probes based on the position

of mismatches in the probes while considering the

possibility of single nucleotide outloops [33].

Another study by Naef and Magnasco [34] and

Mei et al. [26] both described an ad hoc model that

examined the affinity of a probe to a target based on

the sum of position-dependent base-specific con-

tributions. Zhang et al. [35] described an ad hoc model

that considered position-dependent nearest-neighbor

effects. Held et al. [36] examined the effects of free

energies of RNA–DNA duplex formation. Wu and

Irizarry [37] developed a model that considered both

stochastic and deterministic aspects of probe-target

hybridizations. The unifying features of these studies

are: (i) they are based on the analysis of multiple

probes targeting mRNA transcripts (i.e. expression

data), (ii) with exception of Held etal. [36], they only
considered single base-pair mismatches that occurred

in the middle of the duplex (position 13- of 25-mers)

and (iii) they assumed that binding of various RNA

targets was independent and noncompetitive.

As of writing this article, there are more than

19 published papers dealing with designing oligonu-

cleotide probes for DNA arrays studies [38–56];

more than half (n¼ 13) of these articles are published

in bioinformatic journals, and few (n¼ 6 of 19)

actually verified the quality of the design using

experimental data.

Figure 2: Presumptive processes and �G� terms that influence signal intensities. Each panel depicts a labelled (*)
target and an immobilized oligonucleotide probe on an array. Adapted from Pozhitkov et al. [57].
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CONUNDRUM 1: CURRENT PROBE
DESIGN PARAMETERSARE
INCORRECT
In a recent study [57], we have evaluated the

relationship between duplex signal intensity values

and the overall Gibbs free energy of binding �G0
Ob

� �

for ribosomal rRNA targets used for species

identification. We studied all four free energy

binding terms (i.e., �G0
b, �G0

p, �G0
t and �G0

d)

shown in Figure 2, as well as the effects of secondary

structure calculated from aligned (constrained) versus

not aligned (free form) sequence on �G0
Ob and

�G0
t . In our study, we took care to minimize the

occurrence of nonspecific hybridizations by using

known in vitro transcribed targets. Further, we have

examined the effects of secondary structure for both

probes and targets, since structure is known to affect

target capture and detection of rRNA [58, 59].

Finally, only one RNA target was hybridized to one

array while the other studies (see previous section)

examined the binding of multiple RNA targets to

one array. Multiple targets might confound inter-

pretation of the array data since they all contribute

to the extent of nonspecific hybridizations.

Very poor (or no) correlation and low (or non-

significant) R2-values were found for the linear

relationships between expected and actual signal

intensities, even when constrained and free-form

secondary structures of the target RNA were

considered. Principal component and artificial

neural network analyses (with cross-validation [60])

were also not able to find any consistent patterns in

the data. These findings suggest that software

programs that are commonly used to calculate

Gibbs free energy terms in order to predict signal

intensity values, are not very useful for selecting

probes for oligonucleotide arrays, and that other

factors such as surface density of the probes [31]

and/or brush effects [32] might have greater effects

on signal intensity values than previously anticipated.

Comparable studies with mRNA targets were

conducted by Mei et al. [26] and Naef and Magnasco

[34] and both found also that current models were

inadequate. As mentioned above, ad hoc models were

proposed to remedy the situation (Zhang et al. [35],
Held et al. [36] and Wu and Irizarry [37]). These

studies improved predictions of the published

Affymetrix datasets, however it remains unclear if

their findings are applicable to other Affymetrix

microarrays and other platforms. In truth, none of

the models satisfactorily predicted the signal

intensities of probes on oligonucleotide microarrays

since there were still significant disagreements

between actual and predicted values.

In summary, there is little evidence supporting the

notion that the known thermodynamic parameters

accurately predict signal intensity values of duplexes

on oligonucleotide DNA arrays. As a consequence,

current thermodynamic criteria [30, 61, 62] are of

highly questionable use for designing oligonucleo-

tide probes.

CONUNDRUM 2: MISMATCH
PROBESARENOTADEQUATE
CONTROLS FOR NONSPECIFIC
HYBRIDIZATION
The most popular oligonucleotide gene chip is

offered by Affymetrix, which uses 25-mer probe sets

that are specific to known target genes. Each probe

set usually consists of 10 to 20 perfect match (PM)

probes that are complementary to different positions

along a gene sequence. In their earlier chip versions,

Affymetrix designed for each PM probe correspond-

ing mismatch (MM) probes that were similar to the

PM probe, except that it had one mismatched

nucleotide located in the centre of the probe. The

rationale for including MM probes in a probe set is

that their intensities were thought to account for

nonspecific signals that affect both PM and MM

probes in the same way.

Published studies conducted in solution have

shown that a single base-mismatch in oligonucleo-

tide probes can stabilize or destabilize a duplex

depending on the identity of the mismatch, its

position in the helix, and its neighbouring base pairs

[63]. In our study, we have examined the effects of

MM type (i.e. A, C, G or T) and type of

neighbouring nucleotide on intensity values on

DNA arrays and found that both factors had

significant effects on the normalized intensity values

and that there are interactions among combinations

of the two factors [57]. The importance of these

findings is that it affirms the notion that all factors

(individually and combinations) affect the intensity of

signals. Still, even taking these factors into account, it

is not yet possible to predict the hybridization

characteristics of a given MM probe.

It is important to note that labelling of the target

can also affect observed signal intensity values. For

example, fluorescent labels have been shown to

interfere with probe-target binding [34]. In cases
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where there is not enough label in target sequences,

the targets that bind a probe but not shine, whereas

in the case when there is too much label incorpo-

rated in the targets, they will not shine because they

will not bind to the probes.

In summary, the type of mismatch, composition

of neighbouring bases and fluorescent labels can

affect the stability of duplexes on DNA arrays—but

in different ways from what has been inferred from

experiments conducted in solution. Although these

findings provide a first start to understand nucleic

acid hybridizations on oligonucleotide arrays, they

do not yet provide a comprehensive framework that

can be used for the design of oligonucleotide probes.

Clearly, more empirical research is needed into this

direction.

CONUNDRUM 3:WASHING OFF
SPECIFIC TARGETSOVERTHE
NONSPECIFIC ONES
Hybridization occurs not only between specific

(perfect match) probe-target pairs but also between

nonspecific pairs containing mismatches. Therefore,

the observed signal intensity from a single array

spot might represent a combination of perfect match

and nonspecific targets hybridized to the same

probe [64]. This situation seriously compromises

the quality of data generated from array experiments,

affecting target identification and quantification in

complex mixtures. The most commonly used

method thought to eliminate or minimize nonspe-

cific hybridization is to perform a stringent wash,

i.e. rinse the array with low-salt buffer at constant

temperature (isothermal wash). It is widely believed

that once the isothermal wash has been performed,

nonspecific duplexes are washed away and the

observed signal is the ‘true’ signal of the specific

(perfect match) duplexes.

The washing step is a nonequilibrium process

because the dissociated targets are washed away.

The quality of the washing ultimately affects down-

stream analysis and microarray interpretation.

Several studies [65–68] have suggested that scanning

through a range of stringencies in real time would

improve discrimination of specific and nonspecific

targets. These studies were driven by observation

rather than physicochemical interpretation of the

results. Subsequent studies revealed image acquis-

ition problems, i.e. experimental results that were

affected by multiple overlapping processes [69–71]

(which made modelling not possible), and basic

assumptions not to be supported by either theory or

experiments [8, 9].

As defined by the Arrhenius equation and first-

order kinetics [9, 72], dissociation of duplexes on an

array is determined by the activation energy and pre-

exponential coefficient. Dissociation experiments

that examined the activation energies and pre-

exponential coefficients of specific and nonspecific

duplex pairs found no significant difference between

those parameters [9]. Further analysis revealed that in

�20% of cases, nonspecific duplexes dissociated

slower than specific duplexes. These findings indicate

that for such duplexes, one would observe non-

specific signal rather than specific signal after

performing the wash. These results suggest that the

premise that nonspecific duplexes dissociate faster

than specific duplexes is not supported. This premise

is widely believed in the biomedical literature

presumably due to the work of Ikuta et al. [72],

whose study was based on only two specific and six

nonspecific duplex pairs.

In summary, since the observed signal intensity on

an array spot (i.e. probe) is a composite of all specific

and nonspecific targets bound to that probe, one

should not expect that stringent washing protocols is

always to ‘clean up’ the signal. Second, although 80%

of the probes are correctly washed away, the

remaining 20% do not have any sequence-specific

characteristics that can be used to recognize them as

being deviant.

NONTARGET SIGNALPRODUCES
‘GHOSTGENES’
In order to assess the effect of the above-mentioned

challenges on the results of a microarray experiment,

we assessed the effect of hybridizing a single defined

target to a commercial Zebrafish microarray (in

triplicate) and processed the data using Affymetrix

GCOS software (Pozhitkov et al., manuscript in

preparation). Intriguingly, the statistical methods

implemented in the GCOS software not only

identified the specific gene, but incorrectly called

multiple nontarget genes with high confidence. Such

genes may be called ‘ghost genes’. One potential

source for the incorrect calls was found to be the

threshold settings. Although adjusting these settings

had a significant effect on the number of false-

positive calls, we were not able to fully discriminate

some of these nontarget signals from the specific
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gene regardless of the statistical test used. Evidently,

this would not be apparent in an experiment where

complex RNA target mixtures are used. Although

these observations are currently based on a single

experiment only, the results are in line with the

problems outlined above. It is anticipated that the

noise in a microarray experiment to be at least

partially ascribed to signals from ‘ghost genes’.

CONCLUSIONS
It seems that there is currently no way to design an

oligonucleotide microarray such that the probes have

fully predictable hybridization characteristics. One

solution to the problem may be to use multiple

probes per target, in the hope that the average of the

signal might be more reliable. Given that many

results obtained from microarrays can often be

validated with other methods, this ‘black box’

approach seems to be reasonable. However, this is

scientifically not very satisfying, given that it impli-

cates that results can also be wrong. The problem is

even worse when one considers the use of micro-

arrays for microbial identification. Here one has to

often rely on relatively few species-specific probes,

i.e. the ‘black box’ approach that gives a reasonable

validity to mRNA experiments does not apply.

Microbial profiling of biomedical samples using high-

density microarrays containing thousands of probes is

therefore associated with very high uncertainty. The

results discussed here stress the importance of further

experimental approaches for understanding the

physics of oligonucleotide arrays, and how these

affect the interpretation of raw intensities.
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