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Abstract

Kidney stones form when mineral salts crystallize in the urinary tract. While most
stones exit the body in the urine stream, some can block the ureteropelvic junction or
ureters, leading to severe lower back pain, blood in the urine, vomiting, and painful
urination. Imaging technologies, such as X-rays or ureterorenoscopy (URS), are
typically used to detect kidney stones. Subsequently, these stones are fragmented into
smaller pieces using shock wave lithotripsy (SWL) or laser URS. Both treatments yield
subtly different patient outcomes. To predict successful stone removal and complication
outcomes, Artificial Neural Network models were trained on 15,126 SWL and 2,116 URS
patient records. These records include patient metrics like Body Mass Index and age, as
well as treatment outcomes obtained using various medical instruments and healthcare
professionals. Due to the low number of outcome failures in the data (e.g., treatment
complications), Nearest Neighbor and Synthetic Minority Oversampling Technique
(SMOTE) models were implemented to improve prediction accuracies. To reduce noise
in the predictions, ensemble modeling was employed. The average prediction accuracies
based on Confusion Matrices for SWL stone removal and treatment complications were
84.8% and 95.0%, respectively, while those for URS were 89.0% and 92.2%, respectively.
The average prediction accuracies for SWL based on Area-Under-the-Curve were 74.7%
and 62.9%, respectively, while those for URS were 77.2% and 78.9%, respectively. Taken
together, the approach yielded moderate to high accurate predictions, regardless of
treatment or outcome. These models were incorporated into a Stone Decision Engine
web application (http://peteranoble.com/webapps.html) that suggests the best
interventions to healthcare providers based on individual patient metrics.

Introduction 1

The incidence and prevalence of kidney stones in people is increasing globally 2

presumably due to dietary practices and global warming [1]. In the United States, 3

about 11% of the population will have kidney stones in their lifetime [2]. The increasing 4

incidence of kidney stones presents a dilemma to healthcare professionals because the 5

‘optimal’ intervention to remove the stones varies by approach [3], patient health, age, 6

preference, and body size [4] - [8], stone size and composition [9], and stone location [10]. 7

Two interventions most often used to remove/fragment stones, include: shock wave 8

lithotripsy (SWL) and laser ureterorenoscopy (URS). SWL uses high-energy shock 9

waves to fragment stones into small particles that eventually pass out of the body in 10
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urine [11]. This intervention is a less invasive than URS but not as effective in terms of 11

attaining stone-free status – that is, patients might require additional treatments [12]. A 12

laser attached to the URS is used to fragment stones, which are subsequently either 13

transported out of the body in the urine stream or removed during the procedure [13]. 14

Two drawbacks of URS are: higher incidence of treatment complications and more 15

costly, sometimes requiring longer hospital stays than patients treated by SWL [14] [15]. 16

A survey of intervention decisions suggests most patients prefer SWL to URS [16] and a 17

recent Evidence Review by NIH states only ‘small benefits of URS over SWL’ – yet 18

clinical and cost effectiveness favor SWL [17]. Selecting the ‘optimal’ intervention for 19

patients is therefore not straightforward; an approach that helps healthcare 20

professionals with these decisions is highly desired. 21

Artificial neural network (ANN) models are computational systems or algorithms 22

designed to simulate human intelligence and perform tasks that typically require human 23

intelligence. These models learn from data and experience, enabling them to make 24

predictions, recognize patterns, and solve problems without being explicitly 25

programmed for each specific task. They are now widely used in urology to detect 26

kidney stones in videos [18] and images [19]- [24], predict sepsis risk [25] [26] and 27

lithotripsy treatment outcomes [27]- [29], and set SWL machine parameters [30]. 28

The objective of this study was to build a Stone Decision Engine (SDE) based on 29

mining a database containing information on previous interventions (SWL and URS). 30

The databases include information on patient metrics (such as age and Body Mass 31

Index (BMI), stone removal successes/failures, and evidence of treatment complications. 32

We determined the prediction probabilities for various treatment outcomes based on 33

these metrics and the uncertainty of the predictions by repeated independent statistical 34

analyses. ANN models were used to find patterns in the 17242 patient records. The 35

equations of forty models were extracted and incorporated into a SDE application that 36

healthcare professionals can use in patient counseling to predict SWL or URS outcomes 37

based on patient metrics. 38

Materials and methods 39

Ethics statement 40

The research relied on the analysis of anonymized data accessible through the Kidney 41

Stone Registry. The anonymous dataset lacks identifiable information, ensuring no 42

possible linkage to personal data. 43

Electronic medical data 44

The database consisted of 80,000+ patients who had undergone SWL or URS 45

treatments at multiple sites throughout the United States. We selected 20,000 patient 46

records between February 19th 2018 and August 31st, 2021. We then excluded records 47

with missing or erroneous data to end up with 17242 patient records. Individual patient 48

consent was not required as no patient identifiable records were used in the study. 49

A variety of SWL and URS instruments were used to treat patients. Specifically, 50

SWL was performed using the Dornier Compact Delta II (DCD2), Dornier Compact 51

Delta III (DCD3), Dornier Compact Sigma (DCS) (Weßling, Germany), Storz F2 (SF2), 52

or Storz SLX-T (SSLXT) instruments by experienced physicians. Laser URS was 53

performed using Dornier Medilas H20 DMH20, Dornier Medilas H30 (DMH30), Dornier 54

Medilas H35 (DMH35), Lumenis Versapulse 100 watt (LV100) (San Jose, CA), Lumenis 55

Versapulse 20 watt (LV20), or Odyssey Convergent 30 watt (OC30) (Alameda, CA) 56

instruments by experienced physicians. 57

January 17, 2024 2/23



Coding of variables 58

SWL data 59

Label, coding, units: Anticoagulants used prior to treatment (True: 0, False: 1), DCD2 60

(True: 1, False: 0), DCD3 (True: 1, False: 0), DCS (True: 1, False: 0), SF2 (True: 1, 61

False: 0), SSLXT (True: 1, False: 0), Stone location in ureters (True: 1, False: 0), Stone 62

location in kidney (True: 1, False: 0), Stone not specifically located in the kidney or 63

ureters (0ther location) (True: 1, False: 0), Sex (Male: 1, Female: 0), Body Mass Index 64

(BMI, kg/m2), Age of the patient at time of the procedure (years), Stone width (mm), 65

Stone length (mm), Stone side (Left: 0, Right,1), Other medical conditions (e.g., 66

Diabetes or other (i.e., without diabetes), True: 1, False: 0). 67

URS data 68

Label, coding, units: Sex (Male: 1, Female: 0), DMH20 (True: 1, False: 0), DMH30 69

(True: 1, False: 0), DMH35 (True: 1, False: 0), LV100 (True: 1, False: 0), LV20 (True: 70

1, False: 0), OC30 (True: 1, False: 0), Age of the patient at time of the procedure 71

(years), BMI (kg/m2). 72

Target outcomes 73

Two definitions of stone removal outcomes were used: (i) ‘stone free’ or stone fragments 74

<=4 mm were assigned a value of ‘0’, and (ii) stone fragments >4mm or ‘no change in 75

stone size’ were assigned a value of ‘1’. These outcomes were determined by a 76

physician’s review of the follow-up X-ray images and confirmed with patient records 77

indicating no further treatment was required. There were two definitions of ‘treatment 78

complications’: (i) a patient with ‘no complication’ was assigned a value of ‘0’, and (ii) 79

a patient with a treatment complication was assigned a value of ‘1’. Typical treatment 80

complications included pain, fever, urinary tract infection, hematoma, post-operational 81

bleeding, ”steinstrasse”, prolonged dysuria, ureteral perforation, burning, 82

hydronephrosis, acute kidney injury, tachycardia, prolonged gross hematuria, and 83

obstructing fragments. 84

Standardization of the data 85

Prior to building the ANN models, continuous variables were standardized by their 86

corresponding minimum (min) and maximum (max) with the formula: 87

Standardized variable =
raw variable− variablemin

variablemax − variablemin
(1)

ANN modeling 88

The data sets were randomly split into 70% training, 15% testing, and 15% validation. 89

The architecture of the ANN models consisted of an input, a hidden, and an output 90

layer. The number of neurons in input layer was dependent on the number of input 91

variables. The optimal number of neurons in the hidden layer was empirically 92

determined by selecting a range of numbers (e.g., the square root of the number of 93

inputs to the actual number of inputs) and assessing model accuracy using a Confusion 94

Matrix (i.e., (True positives + True negatives)/(False Positives + False Negatives + 95

True Positives + True Negatives). The output layer consisted of a single neuron, the 96

target variable (i.e., stone removal success or treatment complication). In some cases, 97

the model accuracy was assessed by including all data (i.e., training, testing and 98

validation data sets) into the Confusion Matrix, while in others, only the combined 99
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testing/validation data sets were used, as specified in the Results section below. The 100

Neuroet package [31] settings used for training were as follows: scaling method, standard 101

linear function (0, 1); transfer function for input and output neurons, Log-Sigmoid; 102

training method, Levenberg-Marquardt. Training was automatically stopped when the 103

global error between outputs and targets was minimized after several iterations. Weights 104

and biases were retained to build the final equations in MS Excel and C++ programs. 105

Balanced and SMOTED data 106

Preliminary studies showed that the ANN models had difficulties in learning the 107

decision boundaries due to severe imbalances of the data. For example, more patient 108

records had successful stone removals than unsuccessful ones and even fewer patient 109

records involved treatment complications. To address this issue, two data augmentation 110

approaches were used: (i) balancing the training data set with equal number of records 111

for each group (i.e., equal number of successes and failures), and (ii) increasing the 112

number of records in the minority class by synthesizing data using Synthetic Minority 113

Oversampling Technique (SMOTE) [32]. 114

The balanced data set approach involved randomly selecting x number of records 115

from the majority class to make them equal in number to those in the minority class. 116

The SMOTE approach involved: (i) splitting the standardized data set into 70% 117

training and 30% testing/validation, and retaining the training data, (ii) using a 118

Nearest Neighbor model (k=3 to 5) to select data points in the minority class and 119

drawing vectors between neighboring points; and (iii) randomly generating synthetic 120

data along the vectors until the number of records in the minority equal the number of 121

records in the majority. 122

The training data from the approaches were then used to build the ANN models. 123

The weights and biases of each ANN model were incorporated into equations in C++. 124

Suggested Intervention 125

The suggested intervention was calculated by scoring the predicted averages and 126

standard deviations for successful stone removal and treatment complications. The 127

scoring system was as follows: an average prediction <=0.5 was scored as 0; a standard 128

deviation <=0.25 was scored as 0; an average prediction >0.5 was scored as 1; and a 129

standard deviation that was >0.25 was scored as 1. The scores for SWL stone removal 130

and treatment complications were summed, as were the scores for URS stone removal 131

and treatment complications. If the sum of SWL was greater than the sum of URS, 132

then the suggested intervention was “URS”. If the sum of URS was greater than the 133

sum of SWL, then the suggested intervention was “SWL”. If the sum of both SWL and 134

URS were 0, then the suggested intervention was ‘SWL or URS”. If the sum of SWL 135

and URS was > 5 then the suggested intervention was “Uncertain”. 136

Statistical and data analyses 137

Averages, standard deviations, and one- or two- tailed Student T-tests were 138

implemented in Excel spreadsheets. One-tailed T-tests were used when direction of the 139

test was relevant and two-tailed T-tests when the direction of the test was unknown. 140

The data was SMOTED using Jupyter notebooks running Python libraries. All ANN 141

models were built and tested using the bench marked Neuroet package downloaded from 142

http://peteranoble.com/software.html. Library (pROC) in the R-program 4.1.2 143

(2021-11-01) was used to calculate Area-under-the Curve (AUC). 144
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Results 145

Descriptive statistics 146

The Storz SLX-T instrument was more represented (56.0%) in the SWL data set than 147

the Storz F2 (30.7%) and Dornier instruments (13.2%) (Table 1). Also, more stones 148

were in the kidney (i.e., Lower, Mid, Upper Calyx, Pelvis, and Ureteral Pelvic Junction; 149

77.8%) than the ureters (Lower, Mid, Upper Ureters and Ureterovesical Junction; 150

21.6%) or other locations (Bladder, Calcified Stent and Staghorn;<1.0%). Slightly more 151

than half of the patients were overweight healthy males with an average age of 57 years 152

and kidney stones of 8 to 9 mm in diameter. Treatment complications were relatively 153

low (<5%) and most kidney stones (84.4%) were successfully removed by SWL. 154

Table 1. Descriptive statistics for the SWL data set.

Category Item SWL data set (n=15126)

Instrument used Dornier Compact Delta II 6.6% (n=1003)
Dornier Compact Delta III 3.5% (n=536)
Dornier Compact Sigma 3.1% (n=472)
Storz F2 30.7% (n=4651)
Storz SLX-T 56.0% (n=8464)

Stone location Ureters 21.6% (n=3271)
Kidney 77.8% (n=11771)
Other locations <1.0% (n=84)
Stone side (Left=0, Right=1) 55.4% (n=8380)

Stone properties Stone Width (mm) 8.2 ± 4.4
Stone Length (mm) 8.7 ± 4.7

Patient information Anticoagulants (True=0; False=1) 93.8% (n=14192)
Gender (Male=1, Female=0) 55.1% (n=8338)
BMI (kg/m2) 30.1 ± 6.9
Age (years) 57.0 ± 14.9
Medical condition (True=1, False=0) 7.8% (n=1173)

Treatment Outcomes Treatment Complications (False=0; True=1) 4.8% (n=732)
Stone Removal (Success=0; Failure=1) 15.6% (n=2353)

Table notes %, proportion in category; n, number in category.

The Lumenis Versapulse (100 watt and 20 watt) instruments were more represented 155

(63.3%) in the URS data set than other instruments (36.7%) (Table 2). The 156

composition of the patients was similar to those treated by SWL with slightly more 157

than half being overweight males with an average age of 57 years. Treatment 158

complications were relatively low (about 5%) and most (92.8%) kidney stones were 159

successfully removed by URS. 160

ANN model architecture 161

Tests of ANN model architectures for the balanced and SMOTED data sets revealed 16 162

hidden neurons were optimal for SWL models and 5 to 7 hidden neurons were optimal 163

for the URS models. 164

Balanced data sets 165

Models trained with the balanced data set yielded reasonable prediction accuracies 166

ranging from 73.7 to 92.8% for Confusion Matrices and 77.9 to 95.9% for AUC values 167

(Table 3, S1 Table-S8 Table, S1 Fig -S2 Fig). However, when the same models were 168
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Table 2. Descriptive statistics for URS data.

Category Item URS data set (n=2116)

Instrument used Dornier Medilas H20 26.8% (n=568)
Dornier Medilas H30 3.5% (n=75))
Dornier Medilas H35 2.6% (n=56)
Lumenis Versapulse 100 watt 29.3% (n=621)
Lumenis Versapulse 20 watt 34.0% (n=723)
Odyssey Convergent 30 watt 3.4% (n=73)

Patient information Gender (Male=1; Female=0) 54% (n=1142)
Age (years) 56.5 ± 15.5
BMI (kg/m2) 30.4 ± 7.7

Treatment Outcomes Treatment Complications (False=0; True=1) 5.3% (n=113)
Stone Removal (Success=0; Failure=1) 7.2% (n=152)

Table notes %, proportion in category; n, number in category..

tested on the entire data sets, model accuracies for Confusion Matrices (balanced data 169

set versus entire data set) were significantly lower (one-tailed T-test, p<0.04). Similar 170

results were obtained for AUC (one-tailed T-test, p<0.01). The presumed reason for 171

these differences is that the minority class was under-represented in the entire data sets. 172

The results demonstrate the need of an alternative approach to improve model 173

predictions, such as modeling using SMOTE approaches. 174

Table 3. Summary of ANN models developed with balanced datasets and tested with the entire data set.
Model accuracies were assessed using a Confusion Matrix (CM) and Area-under-the-curve (AUC).

Treatment Predicted Outcome

Accuracy
Balanced (%)

Accuracy SWL
all data (%)

Accuracy URS
all data (%)

CM AUC CM AUC CM AUC
SWL Stone removal 73.7 77.9 22.2 50.1 - -

Treatment Complications 81.0 78.8 56.6 64.1 - -
URS Stone removal 92.8 95.9 - - 16.0 55.1

Treatment Complications 80.1 78.6 - - 63.1 51.9
Table notes: The CM and AUC values are shown in S1 - S8 Tables and S1 - S2 Figures.

SMOTED data sets 175

Validation data sets (not used in training or SMOTED) were employed to assess 176

prediction accuracies of the SMOTED models. Table 4 shows that the prediction 177

accuracies based on the Confusion Matrices were reasonable for the SWL and URS 178

models ranging from 82.6% to 93.0%. Interestingly, accuracies based on AUC were 179

sub-optimal, with prediction values ranging from 49.6% to 70.5%. This finding suggests 180

AUCs are more sensitive to the number of minority records (and/or the noise) in the 181

validation data sets than the Confusion Matrices. We will investigate this issue in the 182

next section below. 183

Comparison of the prediction accuracies of the models (two-tailed T-tests) using the 184

validation data sets and the entire data sets revealed no significant differences for the 185

Confusion Matrix or AUC results (Table 4, S9 Table-S16 Table, S3 Fig -S4 Fig). Tables 186

S9-S16, Figures S3-S4). The significance of this finding is that models trained with the 187

SMOTED data sets yielded relatively consistent outcomes regardless of the data sets 188

used to test them. Of note, the SMOTED data sets were not used to test the models – 189

they were only used to train the models. 190
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Table 4. Summary ANN models developed with SMOTED datasets and tested on the validation data set
(hold out) and the entire data set. Model accuracies were assessed using a Confusion Matrix (CM) and AUC.

Treatment Predicted Outcome

Accuracy SWL
validation (%)

Accuracy URS
validation (%)

Accuracy SWL
all data (%)

Accuracy URS
all data (%)

CM AUC CM AUC CM AUC CM AUC
SWL Stone removal 82.5 66.9 - - 84.2 72.1 - -

Treatment Complications 94.0 50.7 - - 94.4 58.7 - -
URS Stone removal - - 89.4 64.8 - - 88.6 55.1

Treatment Complications - - 88.2 49.6 - - 92.6 56.4
Table notes: The CM and AUC values are shown in S9 - S16 Tables and S3-S4 Figures..

Predictions using ensembled ANN models 191

Ensemble processing was used to improve upon model predictions and assess the 192

variability of the predictions of each patient record. This was accomplished by 193

calculating the averages and standard deviations of the predictions from 10 194

independently SMOTED ANN models. The averaged values were then used to assess 195

model performance (Confusion matrix and AUC). 196

Model accuracies were 85.0% for SWL stone removal results based on the Confusion 197

Matrix (Table 5)and 74.8% for results based on AUC (Fig. 1A). Model accuracy was 198

95.1% for SWL treatment complication results based on the Confusion Matrix (Table 6) 199

and 66.3% for those based on AUC (Fig. 1B). 200

Table 5. Confusion Matrix based on averaged predictions of ten ANN models trained on the SMOTED SWL
stone removal data set and tested with the entire data set.

Actual
Predicted

0 1 Sum
0 82.5% (n=12475) 2.0% (n=298) 12773
1 13.0% (n=1967) 2.6% (n=386) 2353

85.0% (n=15126)

Table 6. Confusion Matrix based on averaged predictions of ten ANN models trained on the SMOTED SWL
treatment complication data set and tested with the entire data set.

Actual
Predicted

0 1 Sum
0 94.9% (n=14355) 0.3% (n=39) 14394
1 4.7% (n=708) 0.2% (n=24) 732

95.1% (n=15126)

Fig 1. AUCs for averaged predictions from ten ANN models trained on
SMOTED data sets. A: SWL stone removal success tested with the entire data set
(n=15126 records) B: SWL treatment complications tested with the entire data set. C:
URS stone removal success tested with the entire data set (n=2116 records). D: URS
treatment complication tested with the entire data set.

Model accuracy was 91.2% for URS stone removal results based on the Confusion 201

Matrix (Table 7) and 77.2% for those based on the AUC (Fig. 1C), suggesting 202

moderate to high precision. Model accuracy was 93.2% for URS treatment complication 203

results based on the Confusion matrix (Table 8) and 78.9% for results based on AUC 204

(Fig. 1D). 205
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Table 7. Confusion Matrix based on averaged predictions of ten ANN models trained on the SMOTED URS
stone removal data set and tested with the entire data set.

Actual
Predicted

0 1 Sum
0 89.9% (n=1902) 2.9% (n=62) 1964
1 5.9% (n=125) 1.3% (n=27) 152

91.2% (n=2116)

Table 8. Confusion Matrix based on averaged predictions of ten ANN models trained on the SMOTED URS
treatment complication data set and tested with the entire data set.

Actual
Predicted

0 1 Sum
0 92.2% (n=1950) 2.5% (n=53) 2003
1 4.3% (n=90) 1.1% (n=23) 113

93.2% (n=2116)

The model accuracies for the averaged SMOTED ANN models based on the entire 206

data sets are summarized in Table 9. Two-way T-tests showed no significant differences 207

in predicted outcomes based on Confusion Matrices of individually trained ANN models 208

(Table 4) and those of averaged ANN models ( 9). However, there were significant 209

improvements in predictions based on AUC results (P<0.027). Specifically, the averaged 210

AUC values increased from 58.0% to 73.4%, suggesting that noise in the data was 211

responsible for the substantially lower AUC results previously reported (Table 4). 212

Table 9. Summary of model accuracies for ensembled SMOTED ANN models (n=10) tested with entire data
sets. Model accuracies were assessed using Confusion Matrix and AUC.

Treatment
Predicted Outcome SWL model accuracy (%) URS model accuracy (%)

Confusion matrix AUC Confusion matrix AUC
SWL Stone removal 85.0 74.8 - -

Treatment complications 95.1 66.3 - -
URS Stone removal - - 91.2 77.2

Treatment complications - - 93.2 78.9

In summary, ensemble models improved predictions in two ways: (i) it significantly 213

improved AUC results, and (ii) it enabled Users to access the precision of predictions; 214

those having low standard deviations versus those with high standard deviations, which 215

is important for making intervention decisions of individual patients with kidney stones 216

based on the SDE. 217

Assessment of SDE performance 218

The incorrect SDE predictions could be separated into two categories: (i) those within 219

one standard deviation of the actual value, and (ii) those outside the standard deviation. 220

Incorrect predictions in the first category ranged from 1.1% to 6.5% of the total 221

depending on intervention and outcome, while those in the second ranged from 2.6% to 222

8.4% (Table 10). Combining the number of correct predictions with the incorrect 223

predictions in the first category revealed that the SDE was reasonably accurate with 224

values ranging from 91.5% to 97.3% (Table 10). 225
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Table 10. Prediction performance of SDE (40 model equations) by intervention (SWL or URS) and outcome.

Outcome
SWL URS

Stone removal Treatment complications Stone removal Treatment complications
Correct predictions 85.0% 95.1% 89.0% 92.2%

Incorrect predictions but
within STD

6.5% 1.1% 6.1% 5.1%

Incorrect predictions 8.4% 3.9% 4.8% 2.6%
Correct predictions
and/or incorrect

predictions within STD
91.5% 96.2% 95.1% 97.3%

Table notes: STD, standard deviation of mean.

Individual patients 226

Since the SDE was designed to predict outcomes for individual patients, predictions of 227

10 randomly selected individual patient records were compared to corresponding actual 228

values in the SWL and URS data sets (Table 11) and the suggested intervention was 229

determined. 230

Table 11. Prediction performance of SDE (40 model equations) by intervention (SWL or URS) and outcome.
SR, Stone removal (0=Successful removal, 1=Failure); TC, treatment complication (False=0, True=1).

Intervention by patient Actual SR Predicted SR Actual TC Predicted TC Suggested
SWL 1 0 0.05 ± 0.03 0 0.12 ± 0.06 SWL or URS
SWL 2 0 0.32 ± 0.28 1 0.68 ± 0.22 URS
SWL 3 0 0.06 ± 0.18 0 0.05 ± 0.16 SWL or URS
SWL 4 0 0.48 ± 0.37 0 0.70 ± 0.42* URS
SWL 5 0 0.26 ± 0.24 0 0.18 ± 0.23 SWL or URS
SWL 6 0 0.06 ± 0.17 0 0.06 ± 0.17 SWL or URS
SWL 7 0 0.01 ± 0.14 0 0.28 ± 0.35 SWL or URS
SWL 8 0 0.03 ± 0.13 0 0.01 ± 0.20 SWL
SWL 9 0 0.07 ± 0.13 0 0.06 ± 0.16 SWL or URS
SWL 10 0 0.68 ± 0.39* 0 0.07 ± 0.21 URS

URS 1 0 0.00 ± 0.14 0 0.18 ± 0.29 URS
URS 2 0 0.76 ± 0.24 0 0.02 ± 0.18 SWL
URS 3 0 0.10 ± 0.18 0 0.01 ± 0.15 SWL or URS
URS 4 0 0.00 ± 0.14 0 0.01 ± 0.13 SWL or URS
URS 5 0 0.00 ± 0.13 0 0.00 ± 0.12 SWL or URS
URS 6 0 0.47 ± 0.20 0 0.04 ± 0.14 SWL or URS
URS 7 0 0.00 ± 0.15 0 0.00 ± 0.12 SWL or URS
URS 8 1 0.37 ± 0.20* 0 0.27 ± 0.29 SWL
URS 9 0 0.44 ± 0.20 0 0.27 ± 0.29 SWL
URS 10 0 0.19 ± 0.20 0 0.01 ± 0.18 SWL or URS

Table notes *, Incorrect prediction but within one standard deviation; Bold, incorrect prediction. .

SWL stone removal and treatment complications 231

All actual values for SWL stone removal indicate that the stones were <=4 mm after 232

treatment. The SDE correctly predicted 9 records were <=0.5. One of the records was 233

>0.5 but also had a large standard deviation, indicating the prediction was within one 234
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standard deviation of the correct answer (Table 11). The predictions represent 10 of the 235

14379 records (91.5%) shown in Table 10. 236

Nine of the 10 actual records for SWL treatment complications were ‘0’, indicating 237

no treatment complications, but one record was ‘1’ indicating a treatment complication 238

(Table 11). The SDE correctly predicted 9 of 10 records but one treatment (i.e., SWL 4) 239

was predicted as a treatment complication with high standard deviation. The 240

significance of this finding is the prediction has high uncertainty but within one 241

standard deviation of the correct answer. The correct predictions are represented as 9 of 242

the 14379 records (95.1%) shown in Table 10 and the uncertain one represents 162 of 243

the 15126 records (1.1%) that are classified as incorrect but within one standard 244

deviation of the correct prediction. 245

Six of 10 suggested interventions were categorized, as “SWL or URS” because SWL 246

and URS predicted values were <=0.5 (Table 11). Three of the suggested interventions 247

were URS (only) because the scoring system showed that SWL was greater than URS. 248

One of the suggested interventions was SWL (only) because the standard deviation of 249

URS treatment complication prediction was >0.25. 250

URS stone removal and treatment complications 251

Nine of the 10 actual records for URS stone removal were ‘0’, indicating successful stone 252

removal, but one record was ‘1’ (i.e. URS 2), indicating that the stone was >4mm after 253

treatment (Table 11). The SDE correctly predicted 8 of the 10 records. One of the two 254

incorrectly predicted records had a high standard deviation (20%, URS 8) indicating 255

that the prediction was within one standard deviation of the correct value. This record 256

represents one of the 130 (6.1%) shown in Table 10. The other record (i.e., URS 2) was 257

a false negative (in bold) and represents one of the 102 records (4.8%) in Table 10. 258

All ten actual records for URS treatment complications were ‘0’, indicating no 259

treatment complications and the SDE correctly predicted these records (Table 11). 260

These predictions represent 10 of the 1950 records (92.2%) shown in Table 10. 261

Six of 10 suggested interventions were categorized, as “SWL or URS” because SWL 262

and URS predicted values were <0.5 ((Table 11). Three records were categorized as 263

SWL (only) because the scoring system found that URS > SWL. One record (URS 1) 264

was categorized as ‘URS’ because the scoring system found that URS < SWL. 265

In summary, the SDE demonstrated reasonable accuracy in predicting outcomes 266

based on patient information. To aid healthcare providers in counseling patients and 267

determining the optimal treatment options for stones in the urinary tract, we have 268

developed a user-friendly SDE web interface, which can be accessed at 269

http://peteranoble.com/webapps.html. 270

Discussion 271

The primary motivation of our study was driven by the desire to provide healthcare 272

professionals with a data-driven tool to accurately predict treatment outcomes based on 273

patient information and intervention (SWL and URS). To our knowledge, this is the 274

first large-scale study to predict stone treatment outcomes using ANN modeling. Our 275

study is unique from other studies because the interventions took place at multiple 276

institutions (n=41+) by different medical professionals (n=41+) using a variety of SWL 277

and URS instruments (Tables 1 and 2). Hence, the results should be generalizable and 278

not specific to a particular institution, healthcare professional, or instrument. While 279

there are specific guidelines for the management of urolithiasis set by the American 280

Urological Association (AUA) and European Association of Urologists (EAU), our study 281
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provides recommendations based on past treatments that in theory should align with 282

these guidelines. 283

The secondary motivation was to demonstrate the utility of ANN models to solve 284

complex healthcare problems. Our initial studies using balanced data sets yielded 285

sub-optimal results (Table 3)), presumably due to the minority class biasing the 286

predictions when tested with the entire data sets. The SMOTED data substantially 287

increased the representation of the minority class and consequently improved 288

predictions, as shown in this study and others [33] [34] [35] [36]. Ensembling by 289

averaging the predictions of multiple diverse models reduced the error and improved 290

upon the final predictions (compare Table 4 to Table 9). The diverse models in our 291

study were due to different random splits of the data, randomization of the SMOTE 292

process, and randomization of the initial sets of weights and biases of the ANN models 293

prior to training. Previous studies have used ensemble processes to improve predictions 294

over those made by individually trained models [37] [38]. An additional advantage of 295

the ensemble process in our study was that the variability of the predictions for 296

individual patient records could be determined. 297

The strengths of our study are that the models were based on 17242 patients – far 298

more than other studies; and the predictions should be generalizable because the data 299

were collected from many different institutions, with different healthcare professionals, 300

and a variety of SWL and URS instruments. One limitation of our study is its 301

retrospective design, which may have led to biases and reduced the predictive accuracies 302

of the ensembled models. Ongoing prospective studies may improve upon our findings. 303

Model predictions based on confusion matrix versus those on 304

AUC 305

We investigated prediction accuracies using Confusion Matrices and AUCs to highlight 306

similarities and differences of the two assessment approaches. 307

A Confusion Matrix measures the performance of a classifier using a fixed threshold. 308

Predictions <=0.5, for example, were classified as ‘0’, which corresponds to either 309

‘successful stone removal’ or ‘no treatment complications’, and predictions >0.5 were 310

classified as ‘1’, which corresponds to ‘stone removal failure’ or ‘treatment 311

complications’. The accuracy of a model was defined by the sum of the True Positives 312

and True Negatives divided by the total number of samples and reported as a percent. 313

In contrast, AUC examines the performance of a classifier without any fixed 314

threshold – every possible threshold is examined and plotted as a point on the curve – 315

and it is reported as a percent. The two approaches differ because AUC is apparently 316

more sensitive to noise in the data than the Confusion Matrix, as demonstrated in this 317

study by the improvement of AUC values after multiple independent predictions were 318

ensembled. 319

Input variables to the SDE 320

Previous studies have shown SWL variables affecting treatment outcomes include 321

gender [39] - [42], age [39], [42] [44], SSD [40] [45] - [50], BMI [39] [50], stone 322

number [39] [42] [43], stone size [39], [41] - [43], [48] [51], [55] - [57], and stone 323

characteristics [33] - [48], [51], [54] - [58]. Variables affecting URS outcomes include 324

stone number [59] [60], stone size [53] [59], stone location [59] [60], and stone 325

characteristics [59] [60]. 326

While some overlap exists in the variables affecting SWL and URS outcomes, more 327

variables have been shown to affect SWL outcomes than URS outcomes. These 328

differences were considered during the construction of the SDE and explain the different 329

number of input variables used to predict SWL and URS outcomes in our study. The 330
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choice of input variables was also dependent on the number of missing or erroneous 331

values (e.g., BMI of >100) in the data sets since rows and columns containing numerous 332

missing or erroneous values were excluded from the study. 333

Comparison to other studies in the literature 334

Nomograms and mathematical models have been used to predict SWL and URS 335

outcomes in many previous studies. Nomograms are graphical decision-making tools 336

that are easy to use, and they do not require knowledge of the underlying equation that 337

the nomogram represents. Predictive mathematical models consist of coefficients that 338

are multiplied by input variables and summed to yield a predictive outcome. ANN 339

models fall into this category with the coefficients being the weights and biases of the 340

trained network. 341

Here, we briefly document previous studies (in chronological order by intervention) 342

and where appropriate, mention their limitations. 343

SWL studies 344

Kanao et al. [61] created one of the first nomograms to predict stone-free rates based on 345

435 patients. While the nomogram considered stone size, stone location, and stone 346

number, critics argued that their approach was inadequate because it did not consider 347

stone density and skin-to-stone distance (SSD) [49]. 348

Vakalopoulos et al. [39] constructed a mathematical model predicting the successful 349

outcomes of 1712 patients. The approach was unique from others because the equations 350

were presented. The stated limitations are: (i) different stone locations (i.e., renal, 351

ureter, and total) required different models; (ii) the models would have to be adjusted 352

for different lithotripters; and (iii), the model needed to be validated prospectively to 353

prove its usefulness. 354

Two studies developed nomograms predicting SWL stone-free rates in children. The 355

Onal et al. [63] model was based on 395 patients. The limitation of the study was that 356

the model was based on one urologist at a single institution, and a single instrument 357

and the approach has not been externally validated. The Dongan and Tekgul [64] 358

predicted stone-free rates and complication rates. Yanaral et al. [65] argued that both 359

Onal et al. [63] and Dongan and Tekgul [64] studies could be improved by the addition 360

of variables such as stone density, degree of obstruction, shock power, and number of 361

shocks applied. 362

Wiesenthal et al. [62] examined 422 patients to find that predictors of successful 363

lithotripsy differed by stone location and therefore developed two mathematical 364

equations: one for the kidney and the other for the ureter. The stated limitations are 365

that the models did not consider the different types of lithotripters, nor did they include 366

a diversity of institutions and operators. 367

Tran et al. [58] developed the Triple D score to predict stone-free rates in 235 368

patients. The model was developed by applying threshold values to AUC curves for 369

ellipsoid stone volume, SSD, and stone density. The score was based on the sum of the 370

number of parameters that fell below the thresholds. The research has been validated 371

by Ichiyanagi et al. [66]with 226 patients. 372

Kim et al. [57]predicted stone-free rates for 3028 patients from three independent 373

institutions and developed a nomogram based on sex, stone location, stone number, 374

stone size, mean Hounsfield unit and grade of hydronephrosis. The model could also be 375

used to advise patients on the likelihood of single or multiple SWL treatments. 376

Ickiyanagi et al. [66] developed the Quadruple D score based on 226 patients to 377

predict renal stone free status. The scoring system was defined as the sum of the Triple 378

D score [56] and a number based on stone location in the kidney. The stated limitations 379
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were: (i) the score did not consider stone morphology or hydronephrosis grade, (ii) the 380

score was not tested on stones in the ureters, (iii) the study had limited diversity as it 381

was based on Japanese patients, and (iv) it has not been externally validated. 382

Yoshioka et al. [56] developed an integer score-based prediction model (S3HoCKwave 383

score) for assessing SWL failure based on 2271 patients. The study was conducted at 384

several medical centers and was shown to be superior to Triple D score developed by 385

Tran et al. [58]. In the model, continuous outcomes were converted to dichotomous 386

outcomes, and then multivariable logistic regression analysis calculated the coefficients 387

for each prediction. The values of each prediction were rounded, multiplied by 10 and 388

summed. Assessment of performance was based on internal and external validation. 389

The stated limitations are that the study was based on Asian population and limited to 390

non-contrast-enhanced computed tomography. 391

URS studies 392

Resorlu et al. [59] developed a scoring system to predict stone free status based on 207 393

patients using the following variables: stone size, composition, stone number, renal 394

malformation and lower pole infundibulopelvic angle. Each variable (excluding 395

composition) was scored as either zero or one based on yes or no answers. While the 396

system was limited to a few patients, it has been externally verified by Wang et al. [67] 397

and Bozkurt et al. [68]. 398

Imamura et al. [69] developed a nomogram based on 412 patients that predicted 399

stone free rate. De Nunzi et al. [70] validated the Imamura nomogram using 275 400

European patients. 401

Jung et al. [71] developed a modified S-ReSC score based on 88 patients to predict 402

stone free status; but the low number of patients limits the usefulness of the score 403

although it has been externally evaluated [68]. 404

Ito et al. [60] develop a scoring system for stone free status based on 310 patients 405

using stone volume, stone location, operator experience, stone number and presence of 406

hydronephrosis. The score was derived by the sum of individual scores. The stated 407

limitation of the system is too few patients but it has been externally evaluated [68]. 408

Xiao et al. [72] developed the R.I.R.S system based on 382 patients to predict stone 409

free status of 4 parameters: renal stone density, inferior pole stone, renal infundibular 410

length and cumulative stone diameter. It has been externally evaluated [68]. 411

Bozkurt et al. [68] examined four of the five URS nomograms mentioned above (i.e., 412

[59] [60] [71] [72]) with 949 patients from two institutions. While the nomograms 413

predicted stone free status and treatment complications with varying degrees of success, 414

Bozkurt stated that the nomograms have limitations, and an ideal system has yet to be 415

developed. 416

Nomogram for SWL, retrograde intrarenal surgery (RIRS), and 417

percutaneous nephrolithotomy (PNL) interventions 418

Micali et al. [73] develop a nomogram for predicting treatment failure of solitary kidney 419

stones between 1 and 2 cm in size for SWL, RIRS and PNL. The input data for their 420

model was preoperative clinical data. They stated that external validation of the 421

current nomogram was needed to determine its reproducibility and validity. 422

Conclusions 423

This is the first large-scale multi-site study to develop a SDE that accurately predicts 424

SWL and URS outcomes for prospective patients. A practical outcome of this research 425
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is a SDE web interface that can help healthcare providers in counseling patients and 426

determining the optimal treatment options: http://peteranoble.com/webapps.html. 427
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