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a b s t r a c t

Neuroet is an easy-to-use artificial neural network (NN) package designed to assist with

determining relationships among variables in complex ecological and biological sys-

tems. The package, which is available for download from the web site http://noble.ce.

washington.edu, features a procedure to optimize the architecture of NNs by adjusting the

number of neurons in the hidden layer, and a novel procedure to identify the input variable,
eywords:

eural network

cological Modelling

or combinations of input variables, that is/are important for predicting outputs. The package

also includes a method to extract equations defining relationships among the data (inde-

pendent of the NN package). The performance of Neuroet was assessed using benchmark

standards for NNs. An example of the program’s utility is provided using an environmental

data set.

the global error minimum is attained. However, in practice,
. Introduction

rtificial neural networks (NNs) are useful tools for recog-
izing patterns in complex, nonlinear data such as those
ssociated with ecological and biological data as demon-
trated by the articles published in Ecological Modelling 120
2–3) and 146 (1–3), and the Journal of Microbiological Methods
3 (1–2). They are particularly advantageous over conven-
ional (linear-based) statistical methods because NNs can deal
ith the inherent variability associated with biological data,

nd therefore, provide better recognition of patterns in data
nd make better predictions of response variables (when
rovided with a set of input variables) than conventional
ethods.
NNs are constructed from computer programs and con-

ist of networks of neurons that receive information from

nputs or other neurons, make independent computations,
nd pass their outputs to other neurons in the network. Each
euron in a network is an independent processing element

∗ Corresponding author at: 201 More Hall, Civil and Environmental En
tates. Tel.: +1 206 685 7583; fax: +1 206 685 3836.

E-mail address: panoble@washington.edu (P.A. Noble).
304-3800/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2005.06.013
© 2006 Elsevier B.V. All rights reserved.

composed of weights (that are used to weigh the value of
data received), a bias term (that prevents divisions by zero),
and a transfer function (that passes the value of the neu-
ron forward to the next neuron in the network). Supervised
NNs are ‘trained’ with a set of known inputs and outputs
and ‘learn’ relationships based on examples provided in train-
ing data. During training, they adjust the values of weights
and biases by minimizing error between outputs and target
values, and then adjusting the values of weights and biases
using an error function. The adjusted weights and biases
can then be used to recalculate the output (forward propaga-
tion). The iterative process of adjusting (and readjusting) the
weights and biases is referred to as error back-propagation
(Bishop, 1995; Rumelhart et al., 1986). In theory, error back-
propagation (followed by forward propagation) continues until
gineering, University of Washington, Seattle, WA 98195, United

NNs often get ‘stuck’ in local error minima. A variety of train-
ing algorithms can be used to ensure that a NN reaches its
global error minimum. Conjugate gradient and Levenberg-

http://noble.ce.washington.edu/
http://noble.ce.washington.edu/
mailto:panoble@washington.edu
dx.doi.org/10.1016/j.ecolmodel.2005.06.013
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NNs consist of networks of neurons that are configured in
different ways—depending on the complexity of the data.
Calculating the outputs of multi-connected neurons in a net-
work drastically increases the complexity of the equations.
88 e c o l o g i c a l m o d e l

Marquardt, for example, are sophisticated training algorithms
that optimally adjust weights and biases so that the global
error between outputs and targets is minimized after sev-
eral iterations. Once a NN is properly trained, the adjusted
weights can then be used to generate a model that poten-
tially provides information on the functional relations among
variables.

Despite the general acceptance of NNs as statistical tools
for analyzing ecological data, they are still regarded as ‘black
boxes’ because the contribution of input variables to pre-
dict output variables is often difficult to disentangle within
a network (Olden and Jackson, 2002). Establishing the contri-
butions of input variables to outputs (i.e. response variables) is
needed to gain an understanding of the underlying relation-
ships driving ecological and biological processes. Sensitivity
analysis is frequently used to determine the contribution of
individual input variables to predict outputs (e.g. Urakawa
et al., 2002; Noble et al., 2000; Scardi and Harding, 1999).
Briefly, this analysis involves (i) training a NN, (ii) extract-
ing the equation defining the relationship between input
and output variables, (iii) varying the value of each input
variable (in the equation) while holding all other variables
constant, and measuring the change in the value of the out-
put. The sensitivity of an input variable to an output variable
is expressed as the relative change (i.e. the average slope or
range) because the change is relative to the other inputs used
to train the NN. The drawback of sensitivity analysis is that
correlated and/or noisy input variables often produce incon-
sistent results—even for NNs trained with the same data set.
Variability among NNs is due to the value of weights and biases
that are randomly generated at the start of each training run
and modified during the course of training. An alternative
and robust approach that provides insight into causal rela-
tionships among individual input variables (as well as among
groups of input variables) and output variables, would be
highly desirable, since it would facilitate the development of
broad hypotheses focused on understanding nonlinear eco-
logical and biological phenomena. Moreover, an approach that
provides a ‘simple’ way to extract mathematical equations
relating input variables to output variables would be also
highly desirable because it would lead to the incorporation
of the equations in other applications (e.g. MS Excel, C++ pro-
grams) – independent of the NN software – illuminating the
‘black box’.

The objective of this study was to develop and demon-
strate the utility of a neural network (NN) package designed to
assist scientists in determining relationships among variables
in complex ecological and biological data sets. Specifically,
we (i) developed a procedure to automatically determine
the optimal number of hidden neurons needed to train
a NN, (ii) developed a novel approach to determine the
predictive importance of combinations of input variables
within a complex data set, and (iii) established a simple
procedure for building equations of trained NNs. To this
end, we report on the development and rigorous testing
of a new NN package called Neuroet (Tribou and Noble,

2004). Example files of real environmental data that can be
used to test Neuroet and to demonstrate the procedures
outlined in this document are available for download at
ftp://EcoMod:EcoMod@128.95.45.41.
2 0 3 ( 2 0 0 7 ) 87–98

2. Fundamentals of neural network
computing: calculating the value of an output
from a single neuron, calculating the error
between output and target values, and
adjusting the weights and bias term

The smallest unit of a NN is a single neuron. A neuron is typi-
cally composed of weights, a bias term, and a transfer function
(Fig. 1). Neurons receive input data, multiply it by a weigh, and
pass the information (forward) to other neurons in a network.
For example, consider a single neuron that receives two inputs
(input #1 has a value of 0.3 and input #2 has a value of 0.2). Each
input has a corresponding weight. In our example the neuron
will have two weights (wgt #1 is connected to input #1 and has
a value of 0.7, wgt #2 is connected to input #2 and has a value
of −0.8), a bias term (has a value of −0.5), and a transfer func-
tion (Log-Sigmoid) (Fig. 1). The equation defining the value of
the output for this single neuron is:

Output = Log-Sigmoid((input#1 × wgt#1)

+ (input#2 × wgt#2) + bias)

Incorporating values of the inputs, weights, and the bias
term into the equation below, we obtain an output value of
0.39:

Output = 1

(1 + e(−1×(((0.3×0.7)+(0.2×−0.8))+(−0.5)))

If the actual value of a target is equal to 0.50, the error
between the target value and the output would be equal to
0.11 (i.e., 0.5 − 0.39 = 0.11). When NNs are trained, the weights
and bias terms of neurons are readjusted individually by an
error function. We can simulate training by adjusting wgt #1
to 0.9 and wgt #2 to −0.2. The value of the output would
then be equal to 0.43. By adjusting the weights, the pre-
diction of the output has improved by a value of 0.07—the
neuron has learned! This ‘simple’ example provides infor-
mation on how to calculate the output of a single neuron.
Fig. 1 – The relationship between input variables and the
output of a single neuron (represented by the circle). Shown
are the weights, bias, and transfer function.

ftp://EcoMod:EcoMod@128.95.45.41/
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N packages automatically calculate the values of outputs
n complex networks as well as train, test, and validate
hemselves.

More introductory information on the fundamentals of
eural computing are available in the following articles:
asheer and Hajmeer (2000), Reed and Marks (1999), Principe
t al. (2000), Hagan et al. (1996), and Bishop (1995). Section 3
rovides information on how to: (i) optimize the architecture
f NNs by adjusting the number of hidden neurons, (ii) train,
est, and validate a NN, (iii) extract the equation defining the
elationship between input variables and an output variable of
trained NN, and (iv) determine which inputs, or combination

f inputs, are most important for predicting outputs. Section 4
utlines how we rigorously assessed the performance of Neu-
oet by comparing Neuroet results to those obtained by Sarle
1999).

ig. 2 – Overall structure of Neuroet. (A) Panel for optimizing the
e.g. the number of hidden neurons and the proportion of the da
eural network; (D) Panel for testing the trained neural network;
2 0 3 ( 2 0 0 7 ) 87–98 89

3. The Neuroet package

Neuroet is an easy-to-use NN package that provides analyt-
ical tools to: (i) make predictions, (ii) determine equations
between input and output variables, and (iii) determine the
predictive importance of input variables. In cases (i) and (ii), it
is necessary to optimize the number of hidden neurons before
training; otherwise, the NN might not be able to find patterns
in the data. Too many hidden neurons affect NN performance
by over-fitting (i.e. memorizing) the data, resulting in poor
predictions for test and validation data sets—too few hidden

neurons affect NN performance by under-fitting the data. Neu-
roet also provides an automated procedure to determine the
optimum number of hidden neurons. The user interface for
this procedure is shown in Fig. 2A. Once the number of hidden

number of hidden neurons; (B) Panel for setting preferences
ta used for testing and validation); (C) Panel for training the
(E) Panel for measuring the importance of inputs.
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neurons is determined, the user must set the number of hid-
den neurons in the Preference panel (Fig. 2B). The Preference
panel sets the architecture and parameters for training and
testing the NNs. The user interfaces for training and testing
the NN are shown in Fig. 2C and D, respectively. Determining
the predictive importance of input variables is accomplished
using the interface shown in Fig. 2E.

3.1. Optimizing the architecture

The architecture of a NN is determined, in part, by the number
of input and output variables. Neurons that receive input vari-
ables from a data set are referred to as hidden neurons, while
neurons receiving outputs from hidden neurons are referred
to as output neurons. Fig. 3 shows the orientation of the data
files relative to Neuroet. Neuroet requires two data files: one
file containing the input variables that will be used to predict
output variables and the other containing the correspond-
ing output variables. File x contains rows of tab-delimited
columns of data with each column having a separate head-
ing (e.g. Input#1) and each row comprising of a single record.
While file x serves as the input file for Neuroet, file y serves as
the file containing output data that the NN will use to learn
the patterns. Note the file y also contains a heading for the col-
umn and that each record in file x has a corresponding record
in file y. Given that the number of input variables is deter-
mined by the data set being trained, and the output is limited
to one, the user must specify the number of hidden neurons
to define the final architecture of a NN. It is essential that the
number of hidden neurons be optimized in order to prevent
under- or over-fitting of the data that often leads to incorrect
predictions and/or poor results. The optimal number of hid-
den neurons depends on: (i) the number of input and output
variables, (ii) the number of training records, (iii) the amount
of noise in the output variables, (iv) the complexity of the rela-
tionship between input and output variables, and (v) the type
of transfer functions.

Since there are no explicit rules to estimate the optimal

number of hidden neurons (Sarle, 1999), the optimal number
of hidden neurons was determined by training sets of NNs
containing 1 to n number of hidden neurons and calculat-
ing the median generalization estimator score for each set of

Fig. 3 – Neuroet establishes the relationship
2 0 3 ( 2 0 0 7 ) 87–98

m NNs (e.g. m = 13 in Fig. 2A). Two generalization estimators
were used: Schwarz’s Bayesian criterion (SBC), and corrected
Akaike’s Information Criterion (AICc). The following equations
were used to calculate the SBC (Schwarz, 1978) and AICc scores
(Hurvich and Tsai, 1989):

SBC = (n) log
(

SSE
n

)
+ (p) log(n)

AICc = (n) log
(

SSE
n

)
+ n + p

1 − (p + 2)/n

where n represents the number of training records, and p rep-
resents the number of weights and biases. These estimators
were calculated by determining the sum of squares errors (SSE)
for each of the 13 NNs, discarding NNs that had SSE lower than
the 25th percentile (rounded up), and calculating the median
estimator from the remaining NNs. NNs with low SSE were
removed for the analysis because we assumed that they did
not reach the global error minimum. The optimum number
of hidden neurons was determined by the set of NNs yielding
the lowest median estimator score, indicating the NN models
that best ‘fit’ the data.

Input and output data files used to demonstrate how to
determine the number of hidden neurons are: data1x.txt and
data1y.txt, respectively. These files represent daily water sam-
ples collected from Oyster Landing, South Carolina, USA and
were extracted from the Belle W. Baruch Institute archives
(http://links.baruch.sc.edu/Data/LTERDWSintroPage.htm).
Details on variable names and interpretation of the biological
significant relationships are not provided because they would
distract from the objectives of the study. Several different
options are available for determining the number of hidden
neurons using Neuroet. Details on the available options for
Neuroet and step-by-step instructions for new users are
available at http://noble.ce.washington.edu/Neuroet. The
following settings were used: scaling methods, standardize
� = 0, s = 1; transfer function for input neurons, hyperbolic
tangent, and transfer function for the output neuron, pure

linear; training method, Levenberg-Marquardt; maximum
number of hidden neurons was set to 13; Optimization
method was set to SBC (e.g. Fig. 2A). Explicit details on
the procedures to optimize the number of hidden neu-

of input data in file x to output in file y.

http://links.baruch.sc.edu/Data/LTERDWSintroPage.htm
http://noble.ce.washington.edu/Neuroet
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Table 1 – Rank order of the optimal number of hidden
neurons for the demonstration data set based on SBC
score

Number of hidden neurons SBC score AICc score

4 −12,002 −10,717
3 −12,000 −10,637
5 −11,964 −10,757
6 −11,942 −10,813
2 −11,941 −10,499
1 −11,873 −10,351
7 −11,812 −10,759
8 −11,803 −10,826
9 −11,715 −10,813

10 −11,641 −10,814
11 −11,517 −10,763
12 −11,488 −10,807
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Table 2 – R-squared values of observed versus predicted
outputs for training, testing, and validation data sets
using the demonstration data set

Rank R-square for file

Training Testing Validation

1 0.86 0.78 0.78
2 0.86 0.78 0.77
3 0.86 0.78 0.77
4 0.86 0.78 0.77
5 0.86 0.78 0.77
6 0.86 0.78 0.77
7 0.86 0.78 0.77
8 0.86 0.78 0.77
9 0.86 0.78 0.79
10 0.86 0.78 0.77

Last training 0.86 0.77 0.77

face). Input variables having low scores contributed most to
predicting outputs.

Table 3 is a summary of mean R-squared values (i.e. predict
versus actual output values) and median generalized estima-

Fig. 4 – Predicted vs. actual output values of a trained NN.
13 −11,406 −10,798

ons using Neuroet are available in the documentation at
ttp://noble.ce.washington.edu/Neuroet.

Table 1 shows the relationship between the number of hid-
en neurons and the median generalization estimator scores
or the demonstration data set. The optimum number of hid-
en neurons for this data set was four since NNs trained with
our hidden neurons yielded the lowest median generalization
stimator score. Note that when this experiment was repeated
using the same data set), five hidden neurons were found to
e the lowest median generalization estimator score. Subtle
ifferences in the optimal number of hidden neurons that are
stimated by Neuroet occur often and an approach to deter-
ine whether or not one score provides a better estimate of

he number of hidden neurons required for training a NN than
nother score is shown in Section 4.

.2. Training, testing, and validation

nce the optimal number of hidden neurons is known, it is
ossible to train, test, and validate the NN without over- or
nder-fitting the data (e.g. Fig. 2C). The same input and output
les (e.g. data1x.txt and data1y.txt) were used to demonstrate
ow to train, test, and validate a NN. The settings for Neuroet

or this exercise are the following: scaling methods, standard-
ze � = 0, s = 1; transfer function for input neurons, hyperbolic
angent, and transfer function for the output neuron, pure
inear; training method, Levenberg-Marquardt; the number of
idden neurons was set to four; the proportion of the data
sed for training the NN was 80% and 20% of the remaining
ata was used for testing and validation of the NN (e.g. Fig. 2B
nd C).

Table 2 shows the R-squared values (observed versus pre-
icted output values) for iterations that occurred just before
raining was stopped. For this data set, training data (e.g. 0.86)
rovided better predictions for output variables than testing

e.g. 0.78) and validation (e.g. 0.77) data sets. Subtle differ-
nces in R-squared values are functions of the data randomly
elected for training, testing, and validating the NN—they

hange every time a NN is trained. The ‘Last Training’ results
ndicate the R-squared values of the training, testing, and val-
dation files when training was stopped.
Rank order was based on the overall R-squared values.

Fig. 4 shows the relationship between predicted and actual
values using data from the ‘Last Training’ results. Note that
the NN explained approximately 85% of the variability in the
data.

3.3. Measuring the predictive importance of input
variables

A novel analytical approach was developed for identifying a
variable, or combination of variables (up to five variables), that
significantly contribute to predicting outputs. The approach
is based on training multiple NNs (15×) using n number
of input variables (n = 1, 2,3, . . . n), two hidden neurons, and
one output neuron, and determining which input variable,
or combination of input variables, yields the lowest median
generalization estimator score (Fig. 5; see Fig. 2E for user inter-
Removal of the extreme outliner (value ∼114) and
retraining the NN had no significant effect on the equation
or the R-squared value.

http://noble.ce.washington.edu/Neuroet
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Fig. 5 – Scheme for identifying variable, or combination of variables, that are important for predicting outputs. Fifteen NNs
les y
ns;
were trained. Only two hidden neurons are used. The variab
were important for predicting the output. HNs, hidden neuro

tor scores for each input variable and is based on the same
data used previously (e.g. data1x.txt and data1y.txt). Note that
rank order of the two median generalized estimator scores
are similar, indicating that one score does not appear to be
superior to the other. Variable #1 had the lowest median gen-
eralization estimator score, accounting for approximately 70%
of the variability for predicting the output variable. In this data
set, there was a clear difference in the predictive importance
of input variables with variable#1 and #12 contributing more
to predicting output values than variables # 6, #10, and #11
(which each accounted for less than 10% of the variability for
predicting the output).

One of the difficulties of comparing input variables in
Table 3 is determining whether or not one variable provided
a significantly greater contribution to predicting outputs than
another. For example, in Table 3, Variable #12 appears to be
only marginally more important than Variable #13. Is this dif-
ference statistically significant? Is there a threshold score that
distinguishes important variables from those that are not?

To address these questions, two approaches were used: (i)
variables comprised of entirely random data were added to
input data and the modified data set was then re-analyzed,
and (ii) the probability that one variable, or combinations of
variables, (i.e. rank 1) was more likely correct than another
(i.e. rank 2) was calculated using an information theory
approach (Motulsky and Christopoulos, 2002). We anticipated

that variables containing random data would not contribute
to predicting outputs and therefore would have a high median
generalization estimator score. We also anticipated the proba-

Table 3 – Predictive importance of variables ranked by
their SBC scores

Rank Inputs
included

R-squared SBC score AICc score

1 Var#1 0.70 −1817 −279
2 Var#12 0.57 −1251 287
3 Var#13 0.52 −1069 469
4 Var#7 0.48 −951 587
5 Var#8 0.47 −921 617
6 Var#9 0.44 −851 688
7 Var#5 0.28 −424 1115
8 Var#3 0.17 −214 1324
9 Var#4 0.12 −115 1423

10 Var#2 0.12 −114 1425
11 Var#11 0.08 −31 1507
12 Var#6 0.07 −19 1519
13 Var#10 0.05 14 1552
ielding the lowest median generalization estimator scores
ON, output neuron; Yp, predicted output, Ya, actual output.

bility that one variable was ranked higher than another would
vary subtly between differently trained NNs.

The probability (P) that one NN model was more likely
correct than another was determined using the following
equation:

P = e−0.5 �AlCc

1 + e−0.5 �AlCc

where

�AICc = AICc2 − AICc1

The evidence ratio (E) provides information on how many
times one model was more important than another. The evi-
dence ratio (E) can be calculated using the following equation:

E = Pmodel1

Pmodel2
= 1

e−0.5 �AlCc

The same equations were used for determining P and E
values for SBC.

Comparisons of different variables by P and E scores
obtained using the AICc score (Table 4) indicated that 8 of
13 variables were predictively more important than those of
lower rank. For example, Variable #1 was 9 × 10122 times more
likely to be a much better model than Variable #12. Simi-
larly, Variable #12 was a better model than Variable #13, and

so on. Variable #4 was only marginally better than Variable
#2, indicating that all variables ranked below Variable 3 were
not predictively important as independent variables. Two vari-
ables consisting of random numbers were ranked 14 and 15

Table 4 – Predictive importance of variables ranked by
their AICc score

Rank Inputs
included

AICc score Probability Evidence
ratio

1 Var#1 −279 0.000 8.84E+122
2 Var#12 287 0.000 3.32E+39
3 Var#13 469 0.000 3.87E+25
4 Var#7 587 0.000 4.11E+06
5 Var#8 617 0.000 1.83E+15
6 Var#9 688 0.000 4.83E+92
7 Var#5 1115 0.000 3.76E+45
8 Var#3 1324 0.000 3.12E+21
9 Var#4 1423 0.340 1.94E+00

10 Var#2 1425
11 Var#11 1507
12 Var#6 1519
13 Var#10 1552
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Table 5 – Predictive importance of pairs of variables ranked by their SBC score

Rank Inputs included R-squared SBC score AICc score

1 Var#1 and Var#12 0.81 −2623 −1064
2 Var#1 and Var#13 0.72 −1999 −439
3 Var#1 and Var#11 0.71 −1927 −367
4 Var#12 and Var#13 0.71 −1920 −361
5 Var#1 and Var#5 0.70 −1862 −303
6 Var#1 and Var#2 0.70 −1858 −299
7 Var#1 and Var#8 0.70 −1845 −285
8 Var#1 and Var#10 0.70 −1845 −285
9 Var#1 and Var#6 0.70 −1844 −284

10 Var#1 and Var#3 0.69 −1834 −275
11 Var#1 and Var#9 0.69 −1833 −273
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where HNk is the value of k hidden neuron, w is the weight of
variable j and b is the bias term of kth hidden neuron.
12 Var#1 and Var#4
13 Var#1 and Random 1
14 Var#1 and Random 2

nd are not shown in Table 4. These findings indicate (i) that
ariables #1 through #13 were predictively more important
han variables containing random numbers, and (ii) that incor-
oration of variables containing random numbers into the

nput data for NN analysis validated our approach by distin-
uishing predictively important variables from those that are
ot, and (iii) that Variables #1, #3, #5, #7, #8, #9, #12, and #13
ere important for predicting the output based their P and E

cores.
The predictive importance of pairs of variables is shown in

able 5. Variables #1 and #12 were predictively more impor-
ant than the other pairs of variables, as anticipated from the
esults in Tables 3 and 4. Variables containing random num-
ers (i.e. Ranks 13 and 14) set the lower limit of the possible
05 pairs considered predictively important. The remaining 91
airs were not shown in Table 5.

We also investigated the predictive importance of com-
inations of three variables. Variables #1, #12, and #13 had
he lowest median generalization estimator score followed by
ariables #1, #11, and #12 (data not shown). Rank 1 had P = 0.00
nd E = 5.5 × 105 over Rank 2, indicating that the NN models
omposed of Variables #1, #12, and #13 were significantly more
ikely to be correct than those based on Variables #1, #11, and
12. Since Rank 2 had a P = 0.45 over other ranks, we concluded
hat Rank 1 provided the best combination of variables to pre-
ict the output. We retrained the NN using these variables as

nputs to determine the equation describing the relationship
etween Variable #1, #12, and #13, and the output variable.
n the next section, we will extract the equation representing
he relationship between these input variables and the output
ariable.

.4. Extracting equations from trained NNs

ow that we have established that Variables #1, #12, and
13 are important variables for predicting the output, we will
emonstrate how to extract the equation describing the rela-
ionship between these three variables and the output. Our
asks will be to determine the optimal number of hidden neu-

ons for the three input variables, to train the NN with the
ptimal number of hidden neurons, to extract the weight and
iases, and to built the equation in a spreadsheet (i.e. MS
xcel).
69 −1831 −271
69 −1824 −264
69 −1821 −261

Input and output data files used to train, test, and vali-
date the NN were: data2x.txt and data2y.txt, respectively. The
optimal number of hidden neurons was determined to be 2.
Neuroet settings used for training were the following: scal-
ing methods, standard linear [0,1]; transfer function for input
neurons, Log-Sigmoid, and transfer function for the output
neuron, pure linear; training method, Levenberg-Marquardt;
the number of hidden neurons was set to 2; The proportion
of the data used for training the NN was 80% and 20% of the
remaining data was used for testing and validation of the NN.

The prediction of one record (i.e. one sampling event) is
a function of the three inputs, two hidden neuron, and the
output neuron (Fig. 6). Each input and output value is scaled
to the maximum and minimum values of the variable, defined
by the equation:

SIj,i = Ij,i − min(Ij)

max(Ij) − min(Ij)

where SIj,i is the scaled value of input I of record i and variable
j, and max(Ij) is the maximum value of variable j, and min(Ij)
is the minimum value of variable j.

The value of each hidden neuron (HN) is defined by the
equation:

HN = 1∑
Fig. 6 – Scheme showing the relationship between
variables, hidden neurons and predicted outputs. HN,
hidden neurons; ON, output neuron; Yp predicted output.
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Fig. 7 – Predicted vs. actual values of a trained NN. The
predicted values were derived from weights and biases
extracted from a trained NN. Variables #1, #12 and #13 were
used as input variables. Compare these results to those
obtained using 13 input variables and the same output
variable (Fig. 4). Variables #1, #12 and #13 accounted for
approximately 83% of the variability in the trained NN. The
remaining 11 variables of the original data set accounted
for less than 3% of the total variability. Removal of the
94 e c o l o g i c a l m o d e l

The value of the output neuron (ON) is defined by the equa-
tion:

ON = a(
∑

k
HNkwk + bON)

where ON is the value of output neuron, a the transfer function
which in this case = 1, w the weight of kth HN and b is the bias
term of ON.

The prediction (Y) is defined by:

Y = ON(max(y) − min(y)) + min(y)

where max(y) is the maximum value of output variable y, and
min(y) is the minimum value of output variable y. The value
of ON was rescaled because the output variable y was scaled
prior to training the NN.

A downloadable spreadsheet version of this equation is
called NNexample.xls. Fig. 7 shows a comparison between
actual and predicted output values. Variable#1, #12, and #13
accounted for 83% of the variability in the data while the
remaining 11 variables in the original data set (data1x.txt)
accounted for less than 3% of the total variability (e.g. Fig. 4).

4. Benchmark testing of Neuroet

To thoroughly assess the performance of Neuroet, we com-
pared results obtained by Neuroet to those obtained by Sarle
(1999) using the Donoho-Johnstone (Dojo) neural network
benchmarks. The Dojo functions have one input (x), and one

output (y), and are noiseless and highly nonlinear (Fig. 8) and
represent four functions that have very different patterns.

Sarle (1999) investigated the effects of noise on the num-
ber of hidden neurons needed to model four Dojo functions

Fig. 8 – Four Donoho-Johnston benchmarks used to determine th
shown in the form of f(y) = x. Noise has not been added to the be
extreme outliner (values ∼114) and retraining the NN had
no significant effect on the equation or the R-squared value.

using a NN (Fig. 8). Three amounts of noise were added to
the Dojo functions (low, medium, and high; Table 6). The four

Dojo functions and four levels of noise (control, low, medium,
and high) served as benchmark data for testing NNs. The
Dojo files are available for download from the Sarle (1999) web
site.

e optimal number of hidden neurons. The functions are
nchmarks.
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Table 6 – Noise level add to different data sets (adapted
from Sarle, 1999)

Noise level Standard deviation Signal to noise ratio

None 0 –

r

x
L
t
t
t
w
i
a
t
g
o

p
p
d
a
c
h
u
a
e
t
t
W
s
N
t
n
o
u
i
1
w
u
o
a
r
g
l
W
y
(

m
o
d
i
t

Low 1 7.00
Medium

√
5 3.13

High 5 1.40

Table 6 shows the standard deviation and signal to noise
atios added to each of the four functions by Sarle (1999).

Sarle (1999) trained NNs to predict output y, given input
. The NNs were trained under the following conditions:
evenberg-Marquardt training methods, hyperbolic tangent
ransfer function was used for hidden neurons, and pure linear
ransfer function was used for the output neuron, training was
erminated when the average error gradient was ≤1 × 10−8, or
hen for 10 consecutive iterations, the relative improvement

n the error function was ≤1 × 10−12. The criterion used to
ssess NN performance was based on generalization estima-
or scores (e.g. SBC, AICc). NNs that yielded the lowest median
eneralization estimator scores were considered to have the
ptimal number of hidden neurons.

To assess the performance of Neuroet, we followed Sarle’s
rotocols exactly with the following exceptions: (i) extensive
reliminary runs from multiple random starts were not con-
ucted. Presumably, the reason Sarle did this was to discard
lgorithms that were ‘stuck’ in local error optima. Neuroet
alculates the sum of squares (SSE) for each NN and those
aving SSE that falls into the lower 25th percentile (rounded
p) were discarded. The median R-squared value, and the SBC
nd AICc scores were calculated from the remaining NN mod-
ls. NNs with the lowest SBC and AICc scores were considered
o have the optimal number of hidden neurons for predicting
he output. Our complete analysis was repeated three times.

e assumed that it was not necessary to conduct the exten-
ive preliminary runs from multiple random starts because
euroet automatically does this; (ii) we limited our analyses

o a maximum of 35 hidden neurons. Sarle used 100 hidden
eurons for his upper limit. Since the maximum number of
ptimal hidden neurons found by Sarle was 34, we set the
pper limit of hidden neurons to be examined to 35, conserv-

ng valuable computation time and resources; (iii) we trained
5 independent NNs to determine the generalization scores
hile Sarle used 50 selected NNs. As mentioned above (i), we
sed an alternative approach; (iv) we standardized input and
utput data to have an average of zero and a standard devi-
tion of one, prior to training the NNs. Preliminary studies
evealed that scaling the four Dojo functions affected median
eneralization estimator scores (despite the perception in the
iterature that doing so should have no affect on the results).

e experimentally determined that standardizing the data
ielded consistent results, mirroring those obtained by Sarle
1999).

Once the optimal number of hidden neurons was deter-
ined, R-squared values between predicted and actual
utputs were calculated for training, testing, and validation
ata sets. For all analyses, 80% of the data was used for train-

ng the NN, and 20% for NN testing and validation. To ensure
hat the results were consistent, we repeated the analyses
2 0 3 ( 2 0 0 7 ) 87–98 95

ten times and used the average and standard deviation of R-
squared values as an indicator for assessing NN performance
(e.g. training × testing × validation × 10 runs = 30 runs). In the-
ory, NNs having an optimal number of hidden neurons should
yield consistent results. Comparison of the mean R-squared
value (and standard deviation) of ten independently trained
NNs should provide information on how well NNs recognized
patterns in data and whether or not pattern recognition ability
is consistent among independently trained NNs.

4.1. Results of blocks, bumps, heavisine and Doppler
analyses

4.1.1. Blocks
Neuroet consistently yielded results that were close to those
obtained by Sarle (1999). Sarle (1999) estimated that the num-
ber of optimal hidden neurons to be 11–21, while Neuroet
estimated the number of hidden neurons to be 11–14 (Table 7).

Twelve hidden neurons appeared to be optimal for all
Blocks data sets, regardless of the amount of noise in the
data sets. Mean R-squared values of predicted and actual out-
put values varied by noise level (Table 8), with the control
(no noise) yielding a value of 0.96 ± 0.05, and the high noise
Blocks data yielding a value of 0.62 ± 0.03. Comparisons of the
R-squared values for training, testing, and validation data sets
revealed similar R-squared values (data not shown), indicating
that the NNs were not memorizing the data.

Sarle (1999) found that NNs having 11 hidden neurons was
optimal for all noise Blocks data. Using the low noise Blocks
data, we found that the mean R-squared value (and standard
deviation) of 10 independently trained NNs having 11 hidden
neurons to be lower and more variable (0.91 ± 0.05), than NN
having 13 hidden neurons (0.95 ± 0.03; Table 8). In a repeated
experiment, Sarle (1999) found that 21 hidden neurons to be
optimum for training NNs using the low noise Blocks data.
Results from a one-tailed t-test revealed that 13 hidden neu-
rons provided higher R-squared values than those using 21
hidden neurons (P < 0.004; n = 30) (Table 8). There were no sig-
nificant differences in the R-squared values for the medium
nor high Blocks data sets, indicating that number of hidden
neurons predicted by Neuroet and Sarle (1999) yielded similar
results.

Hence, we conclude that for the Blocks data sets, Neu-
roet yielded results that are similar to those obtained by Sarle
(1999). Increasing noise had no apparent effect on the esti-
mated number of hidden neurons, though R-squared values
decreased substantially—but not standard deviations.

4.1.2. Bumps
Neuroet determined the optimal number of hidden neurons
to be slightly lower than those determined by Sarle (1999)
(Table 7). Sarle (1999) determined that the number of opti-
mal hidden neurons to be 22–34, while Neuroet determined
the number of hidden neurons to be 22–29. Mean R-squared
values varied by noise level (Table 8), with the control (no
noise) data set yielding the highest value of 0.85 ± 0.07, and

high noise data set yielding a value of 0.51 ± 0.08. With excep-
tion to low Bumps, overall comparisons of mean R-squared
value (and standard deviations) of 10 independently trained
NNs using Sarle (1999) values were not substantially different
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Table 7 – Comparison of the calculated number of hidden neurons by study

Data set Noise level Criterion Calculated number of hidden neurons by study

Neuroeta Sarle (1999)b

Blocks None SBC 12, 12, 13 –
AICc 12, 12, [13,14]c –

Low SBC 12, 12, 13 11, 11
AICc 12, 12, 13 11, 21

Medium SBC 12, 12, 12 11, 13
AICc 12, [12,13, 14], 12 11, 21

High SBC 11, 12, 12 11, 11
AICc 11, [12,13, 14], 12 12, 16

Bumps None SBC 23, 23, 24 –
AICc 23, 23, 24 –

Low SBC 22, 26, 28 32, 33
AICc 26, 27,28 33, 33

Medium SBC 24, [24,25], 28 31, 33
AICc [25,26, 28], 24, 28 31, 34

High SBC 23, 24, 24 22, 26
AICc 23, 24, 29 33, 33

Heavisine None SBC 6, 11, 12 –
AICc 6, 11, 12 –

Low SBC 7, [10,12], 10 6, 8
AICc 7, 10, 12 6, 9

Medium SBC 7, [5,8], 9 7, 7
AICc 7, 8, [8,9, 10, 11] 7, 13

High SBC 3, 3, 5 4, 4
AICc [6,7], [6,7, 8], 9 8, 14

Doppler None SBC 15, 15, 16 –
AICc 15, 16, 19 –

Low SBC 17, 17, 18 15, 30
AICc 17, [17,20], 25 19, 31

Medium SBC 14, 17 21 12, 12
AICc [14,15], 17, 21 12, 31

High SBC 12, 14, [9,16] 8, 12
AICc 14, 16, 22 9, 27

a Based on three experiments.
b Based on two experiments.

c Probability based on information theory indicated no difference.

that those obtained from Neuroet (Table 8). One-tailed t-test
results revealed that Neuroet yielded significantly higher R-
squared values using 28 hidden neurons than Sarle using 33
(P < 0.001; n = 30). Hence, we conclude that with exception to
the low Bumps data where Neuroet results were higher R-
squared values than those obtained by Sarle, similar results
were obtained by Neuroet and Sarle (1999).

4.1.3. Heavisine

Sarle (1999) determined that the number of optimal hidden
neurons to range from 6 to 14 while Neuroet determined the
number of hidden neurons to range from 3 to 12 (Table 7).
For the low noise Heavisine data set, R-square values of NN
containing the optimal numbers of hidden neurons deter-
mined by Sarle (1999) and Neuroet were within the same range,
indicating no differences. For the medium noise Heavisine
data set, Sarle (1999) found that 7–13 hidden neurons to be
optimum. R-squared values obtained using 7 and 13 hidden
neurons (Table 8) were not significantly different, indicating
that more neurons did not improve predictability. However,
one-way Student t-test revealed that 9 hidden neurons (pre-
dicted by Neuroet) provided significantly higher R-squared

values than using 7 or 13 hidden neurons (P < 0.001). For the
high Heavisine data, there were no significant differences in
the results obtained by Sarle or Neuroet. With exception to
medium Heavisine data where Neuroet provided better pre-
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Table 8 – Comparison of the R-squared values using the estimated number of hidden neurons by study

Data set Noise This study Sarle’s study (1999)

Number of
hidden

neurons

R-squared valuesa

(X ± S.D.)
Number of

hidden
neurons

R-squared
valuesa

(X ± S.D.)

Number of
hidden

neurons

R-squared
values

(X ± S.D.)

Number of
hidden

neurons

R-squared
values

(X ± S.D.)

Blocks None 12 0.96 ± 0.05 –b – – –
Low 12 0.92 ± 0.05 13 0.95 ± 0.03 21 0.92 ± 0.05 11 0.91 ± 0.05
Medium 12 0.83 ± 0.05 14 0.86 ± 0.03 11 0.87 ± 0.08 21 0.86 ± 0.03
High 12 0.62 ± 0.03 13 0.62 ± 0.02 16 0.62 ± 0.03 – –

Bumps None 23 0.83 ± 0.12 – – – –
Low 27 0.82 ± 0.12 28 0.85 ± 0.07 32 0.76 ± 0.13 33 0.78 ± 0.14
Medium 28 0.75 ± 0.10 26 0.79 ± 0.05 31 0.68 ± 0.08 33 0.80 ± 0.06
High 24 0.50 ± 0.08 23 0.51 ± 0.08 33 0.45 ± 0.04 26 0.46 ± 0.12

Heavisine None 6 0.99 ± 0.00 – – – –
Low 7 0.98 ± 0.01 12 0.98 ± 0.00 6 0.98 ± 0.00 9 0.98 ± 0.00
Medium 11 0.91 ± 0.01 9 0.91 ± 0.01 7 0.90 ± 0.01 13 0.90 ± 0.02
High 3 0.62 ± 0.04 6 0.67 ± 0.02 9 0.65 ± 0.01 14 0.67 ± 0.03

Doppler None 15 0.92 ± 0.02 – – – –
Low 17 0.93 ± 0.01 25 0.92 ± 0.02 15 0.93 ± 0.01 30 0.93 ± 0.01
Medium 17 0.86 ± 0.02 21 0.85 ± 0.01 12 0.84 ± 0.14 31 0.83 ± 0.03
High 16 0.58 ± 0.03 22 0.60 ± 0.01 9 0.57 ± 0.04 21 0.58 ± 0.04

Two optimal number of hidden neurons (from Table 7) that yielded the highest R-squared values are shown for each study.
a Means were calculated from R-squared values of predicted and actual outputs obtained from training, testing and validation data sets of 10 independent NNs.
b Not determined.
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dictions, there were no significant differences in the number of
optimal hidden neurons selected by Sarle (1999) and Neuroet.

4.1.4. Doppler
There were subtle differences in the number of optimal hid-
den neurons determined by Neuroet and Sarle (1999). Sarle
(1999) estimated that the number of optimal hidden neurons
to range from 8 to 31, while Neuroet estimated the number of
hidden neurons to range from 12 to 25 (Table 7). There were
no significant differences in R-square values for low or high
Doppler data sets (Table 8). However, a one-way Student t-test
indicated that Neuroet provided higher R-square values than
those obtained using the optimum number of hidden neurons
provided by Sarle (1999) (P < 0.001).

5. Summary

Experiments aimed at determining the importance of inputs
to predict outputs using an example data set revealed that
three of 13 possible variables were important for predicting
the output variable. The weights and biases extracted from a
NN trained to relate three input variables to an output variable
was used to build an equation relating input variables to out-
puts. The R-squared values of predicted versus actual outputs
revealed that the equation accounted for most of the variabil-
ity between input and output variables. Benchmark testing of
Neuroet revealed that the procedure to automatically deter-
mine the optimal number of hidden neurons yielded accurate
results. Moreover, predictions of optimized NNs were similar
to (and sometimes better than) those obtained by Sarle (1999).
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