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Abstract
We describe various types of outliers seen in Affymetrix GeneChip data.We have been able to utilise the data in the
Gene Expression Omnibus to screen GeneChips across a range of scales, from single probes, to spatially adjacent
fractions of arrays, to whole arrays, to whole experiments. In this review we describe a number of causes for why
some reported intensities might be misleading on GeneChips.
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INTRODUCTION
Affymetrix GeneChip technology has proven to

be an effective way to measure the co-expression

of tens of thousands of genes. This has resulted

in many thousands of publications that have

detailed expression changes across many tissues,

developmental stages, phenotypes and diseases, for

most of the major model organisms. Much of the

data is now deposited in public resources, such as

the Gene Expression Omnibus [1]. A number of

groups are now exploring the best way to mine

that data.

Although GeneChips measure many genes simul-

taneously, most published studies have only utilised

a relatively small number of conditions. This has

led to many analysts referring to the ‘curse of

dimensionality’, since it is not clear how best to

extract statistically significant changes, which are

also detailing interesting biology from comparisons

of just a few GeneChips. As a result many users of

GeneChips report thousands of genes to be differ-

entially expressed when comparing two or more

conditions, but then choose, for pragmatic reasons,

to focus on unravelling the biology of only a few

tens of genes. However, the availability of large

collections of GeneChip experiments enables us to

overcome the problem since we now have more

conditions studied than there are genes. However,

in order to use these surveys to extract biological

signals, it is imperative that reliable quality control

checks are developed to assess the impact of any

biases in the data.
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An Affymetrix GeneChip consists of a high-

density array of oligonucleotides, and each transcript

is detected by a particular group of 25mer probe

sequences, known as a probe-set. The collation of

the intensities in multiple probes, into a single mea-

sure of expression for a gene, has a significant impact

upon what can be inferred from GeneChip data

[2, 3]. Although many of the expression measure

calculations try to correct for outliers, it is important

to remove known outliers prior to the calculation of

the expression measure. Otherwise, they will act to

alter the detection of other potential outliers within

the expression measure calculations. Known outliers

might appear to tentatively support the values seen

by others in their probe-set, even though this is

coincidental. We therefore advise that known out-

liers should not be included in the calculations of

expression.

Some probes with likely problems can be identi-

fied even without looking at the output from an

experiment. Clearly probes that do not map to the

same transcript as others within their set, or those

that map to more than one transcript, will, poten-

tially, produce discrepant results. As a result there

have been a number of efforts to generate up-to-date

mappings between the probe sequences and the

information in genomic databases [4, 5]. Also,

chains of nucleic acids may undergo folding.

If either a probe sequence, or a fragment of a

target complementary to a probe, shows regions

of self-complementarity, then this affects hybridisa-

tion efficiency [6]. Estimates of folding rates sug-

gest that �10% of probes may be affected by

folding [7].

In this review we focus on newly discovered

biases that are invisible within a single experiment,

but become apparent when the data from several

experiments are compared. We have been able to

utilise the data in GEO to screen GeneChips across

a range of scales, from whole experiments, to whole

arrays, to spatially adjacent fractions of arrays, to

single probes. This information can then be utilised

by analysts who have only a relatively small number

of GeneChips available, in order to sharpen their

results, potentially leading to novel insights into

their biology of interest. We will describe a

number of potential causes for why some reported

intensities might be misleading on GeneChips.

Unless otherwise stated, the results have been

derived from a study of 2756 HG-U133_Plus_2

GeneChips downloaded from GEO in 2007.

METHODOLOGY
The results reported here are the outcomes of a con-

tinuing and ongoing examination of GeneChips.

A natural next step was to question whether the

probes in probe-sets are equally responsive to

changes in expression level. An effective procedure

was provided by the use of heatmaps [9], with heat-

maps for a range of Human GeneChips being avail-

able at http://bioinformatics.essex.ac.uk/users/

harry/. The study of heatmaps reveals many instances

of individual probes that are not well-correlated

with the remaining members of an otherwise well-

correlated probe-set. Subsequent research has shown

that there can be many different causes of the poor

correlations: those that we have identified are

described in the next sections. However, the list is

not exhaustive: we have identified other groups of

probes that appear to behave unusually. These are

not listed here since our research has not yet identi-

fied the underlying causes.

Heatmaps for entire probe-sets may mislead,

however, since alternative splicing and poly-

adenylation can cause probes for the same gene

to show differential expression with respect to each

other [8]. It is also entirely possible for one exon to

be up-regulated at the same time as another exon

from the same gene is down-regulated. Similarly,

groupings of probes either side of a polyadenylation

signal may show differential expression. Because of

these possibilities we have focussed on studying

groupings of probes that map to the same exon:

all such probes should certainly be well correlated

with one another. We study unique probes, those

that only target one place on a single exon [9]

according to the exon definitions from Ensembl.

This means that we only utilise a fraction of the

probes available on the GeneChip, but the fraction

we use will have been chosen to provide reliable

measurements.

CAUSES OF OUTLIERS
We subdivide the causes into effects that are

directly related to the base sequences in the

probes and effects that are unrelated to the base

sequences. Our results are based on the CEL files

that we have downloaded from GEO. These CEL

files are identified by ‘GSM’ numbers, with each

separate experiment being identified by a ‘GSE’

number.
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Outlier probes related to probe sequences
Runs of guanines
Probes containing runs of guanine show abnormal

binding affinities, with respect to models of hybridi-

sation, and are typically outliers with respect to the

rest of the probe-set to which they are assigned [10].

We have recently confirmed that probes containing

G-spots, i.e. runs of four, or more, contiguous gua-

nines, usually show uncorrelated behaviour with the

rest of the probe-set to which they are assigned. But

we have gone further in discovering that probes con-

taining G-spots report intensities that are correlated

with the other probes containing runs of guanine

[11, 12] (Figure 1).

We believe that G-quadruplexes are forming on

GeneChips and that their formation acts to confuse

the interpretation of probes containing runs of

guanine. Neighbouring probes can readily come

into physical contact on Affymetrix GeneChips and

each of the probes consists of the same sequence.

Such identical sequences are not able to Watson–

Crick hydrogen bond to each other. But, rather

than Watson–Crick hydrogen bonding to their asso-

ciated transcripts, probes containing runs of guanine

will form Hoogsteen hydrogen bonds with adjacent

neighbours (which also contain runs of guanine).

Under this scenario, a group of four probes will

form a tetrad of interactions, and a stack of tetrads

resulting from the run of guanines will stabilise the

grouping. These probes will all have their guanines

pointing into the quadruplex, and so will not be

available to hybridise to target. But, if groups of

four probes form quadruplexes, this results in extra

space outside the quadruplexes enabling remaining

unbonded probes to hybridise strongly to targets.

Further details on the biophysics of GeneChips, par-

ticularly related to the impact of G-quadruplexes,

can be found in [12].

Motifs related to chip preparation
A family of sequence motifs, centred on GCCTCCC

and related to the preparation of target, confuses the

interpretation of data from GeneChip experiments

[13]. Amplification of mRNA occurs during

the preparation of the RNA target with the most

popular amplification method being the Eberwine

technique [14]. This method is based on the incor-

poration of a T7-binding site with an oligo-dT

primer in the first strand of cDNA. The variants of

the T7 primer have the core T7-binding domain in

common. The T7-binding domain is essential for the

first interaction with the RNA polymerase and the

start of transcription. The bases flanking the core

T7-site are called spacer sequences [13]. The 50

spacer is introduced to avoid having the T7 binding

site on the end of the primer. The 30 spacer is the

reflection of the viral T7 sequence at the relevant

position in the polymerase binding site [15].

However, a more common belief is that the 30

spacer is just a separator between the T7 site and

the oligo-d(T) stretch [13]. The final step of the

amplification procedure is the incorporation of

Figure 1: Distributions of pair-wise correlations (based on 2756 downloaded HG-U133_Plus_2 CEL files) between
each of the probes that contain G-spots and map uniquely to single exons.
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the 30 spacer sequence and its transcription by the T7

RNA polymerase. In this way, the 30 spacer

sequence becomes the leader sequence for all the

copies of the amplified RNA. The 30 spacer

sequence of the Affymetrix primer is transcribed as

the 9-mer leader sequence 50GGGAGGCGG30 and

its complementary motif is 50CCGCCTCCC30.

Kerkhoven et al. [13] noted that the T7 spacer

sequences caused hybridisation artefacts on those

probes containing complementary sequences of the

spacer sequence (T7 30 spacer motifs). Because there

are no rules for eliminating these complementary

sequences in the probe design of Affymetrix,

probes containing fractions of these complementary

sequences, such as GCCTCCC or CCTCC, may

hybridise to the leader sequence of every amplified

RNA molecule.

We find that the motif identified by Kerkhoven

et al. [13] has some impact on the correlations

observed from GeneChips. An example is shown

in Figure 2 using data from 2756 CEL files. All of

the probes here belong to different probe-sets and

map to different genes, and have low or negative

correlations with the rest of the probes in their

own probe-sets. But all of these probes have the

subsequence ‘CCTCC’ in common and show high

correlation with each other. It is our belief that these

correlations are not resulting from biology, but

instead from cross-hybridisation of the probes to

the primer-spacer appended to transcripts, as sug-

gested by Kerkhoven et al. [13]. Pairs of probes

which both contain CCTCCC show correlations

typically between 0.5 and 0.8, whereas probes

containing GCCTCCC show higher correlations

�0.8 (Figure 3).

Other motifs
There is a wide variation in general expression levels

that is unlikely to be entirely a reflection of the

variations in the transcriptome being studied. Given

that the effects of the G-quadruplexes (G-spots) and

the primer spacers (CCTCC) may be related to

chip preparation, it is natural to look for further

examples. As a step in that direction, we have iden-

tified those probes that contain specified motifs. We

have accomplished this for all motifs of lengths

three to seven. For the longest of these motifs

there are 47
¼ 16 384 possible sequences ranging

from AAAAAAA to TTTTTTT. The most fre-

quently occurring on the HG-U133_Plus_2 is

the sequence TTTCTCT that appears in 5265

probes. However, the sequence CCCCCCG

appears only in 79 probes, and for that reason we

have not studied longer motifs. For each motif

we have calculated its average value for each CEL

file (multiplicatively scaled to have the same mean):

thus for TTTCTCT, we have averaged the expres-

sion levels for the 5265 probes in which that

motif occurs.

With this large number of probes, any variation

from one CEL file to another is unlikely to be due to

biological variation. Despite the overall scaling of the

Figure 2: A collection of probes from different probe-sets which map to antisense transcripts and which are
highly correlated with each other across the 2756 HG-U133_Plus_2 CEL files downloaded from GEO.The columns indi-
cate the probe order in the heatmap, probe identifier (pmmeans perfect match followed by a number that indicates
the position of the probe in the probeset), x coordinate in the CEL file, y coordinate in the CEL file, interrogation
position on the consensus/exemplar sequence defined by Affymetrix, sequence, geometric mean of the intensities
across GEO, and standard deviation (of the logs of intensities respectively). The numbers in each of the cells repre-
sent the rounded correlation�10.
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Figure 3: Distributions of pair-wise correlations between each of the probes that map uniquely to single exons
and that: (a) contain the motif CCTCC; (b) contain the motif CCTCCC; (c) contain the motif GCCTCCC.
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CEL files there will, of course, be variability in the

averages for a given motif. We now calculate

‘z-scores’ for each motif average (by comparing

each CEL average with the mean for the remaining

2755 CEL averages and dividing by their standard

deviation). There will be many z-scores that

exceed the usual values judged significant (we are

calculating �45 million such values) so we concen-

trated on those with an absolute value >6 (corre-

sponding to a chance probability of �1 in 5 million):

we found >24 000 such values. These were not ran-

domly spread amongst the CEL files, nor amongst

the motifs.

The GSE2125 group gave many unusually high

z-values for motifs including CTTC and TTCTC

and unusually low values for motifs including the

complementary AAGAG sequence. However, pos-

sibly the clearest evidence of a ‘motif bias’ links the

members of GSE3678 and GSE4219 with the

TTTTTTG and TTTTTTT motifs. For example,

GSE4219 comprises 24 CEL files (12 in each of

the subseries GSE4217 and GSE4218) of which 20

had z-values exceeding 6 for the TTTTTTG motif

and 22 for the TTTTTTT motif. The remaining 10

CEL files having high z-values for the TTTTTTT

motif are all members of the GSE3678 set, which

comprises 14 CEL files.

Outlier probes associated withwhere
and when the chip was run
The effect of the scanner
In the case of both G-spots and the CCTCC motif,

the probes affected were poorly correlated with

others in their probe-set, but were well correlated

with others in their group. There are many other

probes that also display markedly low correlations

with the members of an otherwise highly inter-

correlated probe-set [9]. A first step is to ask whether

these probes are strongly correlated with any others

on the array.

For one subgroup of probes, the strong correla-

tions were with the lower-magnitude probes on the

edge of the array which are probes having no bio-

logical significance. These probes are intended to

provide a reference pattern of roughly alternating

bright and very bright signals that enable the subse-

quent analysis of the scanned GeneChip to correctly

allocate signals to probes. At first sight, therefore, the

presence of high correlations between biologically

relevant probes and these control probes is surprising.

The answer lies in the magnitudes of neighbouring

probes: all the lower-magnitude edge probes are

adjacent to very bright edge probes, while all the

affected non-control probes also lie next to high-

magnitude probes.

Table 1 demonstrates how the size of a neighbour

matters. For every perfect-match and mismatch

probe we calculated the correlation (over the 2756

CEL files) of the values of that probe and the values

of an arbitrarily chosen control probe—we chose the

probe at (0, 0). We assigned each perfect match

or mismatch probe to a class determined by the

magnitude of the probe’s nearest neighbour.

The table reports the median correlations for each

class, with the results very clearly showing that the

magnitudes of these unwanted correlations are

indeed determined by the magnitude of the neigh-

bouring large probe.

Each probe value in a CEL file is derived from a

set of (typically 25) individual measurements made

by a standard Affymetrix scanner [16]. The standard

algorithm takes the 75th percentile of these values to

calculate the intensity recorded in the CEL file. The

CEL file also provides the standard deviation and

number of measurements as part of its output.

Moreover, the identity number of the scanner and

the date and time of the scan are given in the CEL

file’s header. If a scanner is not well focussed then

what should be a sharp image of a bright spot will be

blurred across its neighbours (in the same way that

stars appear to twinkle). For a poorly focussed scan-

ner the effect on neighbours will be most noticeable

in the case of the brightest probes, as is suggested

by Table 1. The potential outcome is illustrated

in Figure 4 which is a scatter diagram of the values

of two overlapping members of the 233481_at

probe-set.

In Figure 4, the line of equality suggests that

probe 5 usually has values that are only slightly

larger than those for probe 4, and the expected

linear relation between the values of the two

Table 1: The correlation between the values of a
probe and the values at (0, 0), based on a random
sample of 300 CEL files

Size of nearest neighbour 50^ 150^ 400^ 1000^ 3000^ 8000^

Median correlation with (0, 0) 0.07 0.13 0.25 0.50 0.70 0.85

The probes are subdivided by the size of their largest neighbour as
reported in the CEL file.The groups are non-overlapping.

204 Upton et al.
 at A

labam
a S

tate U
niversity on A

ugust 25, 2010 
http://bfg.oxfordjournals.org

D
ow

nloaded from
 

http://bfg.oxfordjournals.org


probes is visible to an extent. However, there is

an obvious cloud of points at the top left correspond-

ing to cases where the value of probe 5 is as much

as eight times the value of probe 4. There are also

many other cases in which the value for probe 5 is

more than double that of probe 4, suggesting that a

smaller amount of blur is inflating these values. The

CEL files in the top left of Figure 4 are not a random

selection: they represent a series of files all scanned

by the same scanner during a period of about

four weeks when ‘there were numerous break-

downs, and we had an Affy field engineer work-

ing on both the scanners and the chip washers

nearly every week’ (Michael Bittner, personal

communication).

Time
Scanners are used to scan many types of array,

and we have not attempted to follow the usage of

a scanner through these different types across time.

For the HG-U133_Plus_2 CEL files, however, we

can report evidence that (i) some scanners appear

to give more blurred images than others, and

(ii) in general scanners appear to become less accurate

with time. Plotting a measure of blur (the ‘Sharpness

ratio’ statistic used in Figure 5 compares the value of

S for a given CEL file against the average value

of S, where S is the sum of the squared differences

between a probe value and the average of its four

immediate neighbours, summed over all probes in

the file) against time shows discontinuities suggesting

that scanner performance can be capable of consid-

erable improvement (presumably by servicing or

renewal of a component). The results for all 310

downloaded files for scanner 50206210 are shown.

Outliers concentrated in one region
of the chip
A large number of microarray experiments available

in GEO contain replicate data in their hybridisations.

Replication, although often regarded as expensive

and time consuming, is an important tool to measure

random noise in microarray experiments. When bio-

logical replicate arrays are produced, at each location

of the array we would expect to observe little vari-

ation between the intensity values. Naturally, this

variation will be higher in some locations than in

others. However, if locations with unusually high

variation are concentrated in compact regions of

Figure 4: A scatter diagram showing the intensities
for two members of the probe-set 233481_at from the
2756 HG-U133_Plus_2 CEL files. The two probes have a
19-base sequence in common, so that a high correlation
would be anticipated. However, probe 5 lies adjacent
to a high-value probe (mean> 20 000), whereas probe
4 does not (highest neighbouring mean 70).

Figure 5: An example of the apparentchange inbehav-
iour of a scanner with time. Each point represents one
of the 310 downloaded HG-U133_Plus_2 CEL files that
were scanned by scanner 50206210. In early 2004 the
scanner produced very sharp images, but the quality
steadilydeteriorated through that year. An improvement
late in the year carried through to 2005, but by mid
2005, the imageswere, at best, only of average quality.
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the array, then a spatial defect might be contaminat-

ing the data.

Spatial defects in Affymetrix GeneChip data are

typically manifested as blobs, scratches, rings or arcs

concentrated, particularly towards the edges of

the array [16–19]. We have developed methods to

visualise spatial defects by comparing each location in

all the available replicates with a reference set of

values [19]. By comparison with a reference set, it

is possible to identify locations with unusually low or

unusually large values in all the replicates. If these

locations are concentrated in compact regions of

the array, then spatial defects are visible. Figure 6a

shows an example of circular spatial defects visible in

three replicates of the HG-U133_Plus_2 array,

obtained from GEO.

Minimising spatial defects is an important, though

often neglected, step in microarray data analysis.

Such defects are likely to affect the intensity values

in a subset of the probes within a probe-set, and thus

Figure 6: (a) Spatial defects in three replicates of the HG-U133_Plus_2 array; (b) Remaining flaws in the same three
replicates after applying the LPE and CPP adjustments in sequence.The upper rows show the locations of unusually
large values and the lower rows the locations of unusually low values.
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impact upon the gene expression measurements

assigned to that probe-set [16]. Thus, it is important

to utilise appropriate tools to minimise the effects of

these defects. We have developed two methods to

assist with flaw reduction: the local probe effect

adjustment (LPE) and the complementary probe

pair adjustment (CPP) [19]. The methods can be

utilised independently or sequentially. Both methods

use the spatial compactness of the defects to minimise

the magnitude of the defects and hence the impact

of the defects on the affected probe-sets. Standard

normalisation procedures, such as quantile normal-

isation, make no such adjustments. Figure 6b shows

the spatial defects that remain after normalising the

data sequentially first with LPE and then with CPP.

Although some circular patterns are still visible, it is

clear that the methods are effective in spatial defect

reduction.

For experiments with replicate arrays, the set of

reference values to visualise spatial defects is typically

obtained with the median of all replicates [19].

However, in the absence of replicate arrays an alter-

native reference set is required. A reliable set of com-

parison values can be obtained by calculating the

geometric mean of the intensity values (on a probe

by probe basis) for arrays available in GEO [17]. For

robustness it is recommended that the upper and

lower 5% of the observed values are discarded so as

to avoid the potential effects of outliers.

Outlier arrays
Identifying outlier arrays
With a few exceptions such as the large-scale

cancer studies, experimenters typically analyse just

a few arrays. They may compare values across

arrays, but are unlikely to compare whole arrays

and will certainly be unaware if all their arrays

(and hence all their results) are atypical of those

obtained by the wider community. Figure 7 is a

scatter diagram of the median value plotted against

the ratio of the quartiles for some 2756 arrays of

the same type (HG-U133_Plus_2). The medians

and quartiles have been determined for each array

from the complete set of 1 354 896 probe values

(therefore including perfect matches, mismatches

and controls).

Figure 7 shows that the typical HG-U133_Plus_2

CEL file has a median expression level of about 100,

with the value of the upper quartile being about

double that of the lower quartile. Some extreme

results are indicated. One CEL file (GSM46839

at bottom left) shows barely any expression and

is evidently uninformative. In contrast, another

(GSM53147 at extreme right) has expression levels

of typical variability, but at around 20 times the

standard level. Both these data sets, and others with

unusually high or low medians, or with low quartile

ratios, should probably not be used for interpretation

of genetic effects.

Figure 7: A scatter diagram showing the variations in general expression level and within-file variability in a
sample of 2756 HG-U133_Plus_2 CEL files. For each data set the ratio of the quartiles is plotted against (on a log
scale) the median expression value.
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Some CEL files have unremarkable median

values, but show extreme variation between their

high and low values. This suggests that these

are arrays without blur and are therefore observing

values with unusual clarity. One such is GSM38365

(at the top of Figure 7). It is noteworthy that the

other points in this region of Figure 7 correspond to

other CEL files collected as part of the same experi-

ment (GSE2125).

Degradation
We have calculated the intensity ratio of the 50-most

probe to the 30-most probe for 10 378 exons in

every HG-U133_Plus_2 CEL file. Each probe pair

measures the expression of a single exon and they

have constant binding affinities so that the intensity

ratio provides a consistent measure of RNA fall-off.

Figure 8 shows the results, for a single exon probe

pair, for the 2756 CEL files. Experiments GSE3678

and GSE4219 (GSE4217 and GSE4218) again stand

out in some exons as does experiment GSE5281.

Similar results are obtained for each exon probe pair.

PREVALENCE AND IMPACT
Runs of guanines
The presence of G-spot probes was first identified by

analysing human arrays, but has subsequently been

identified on the arrays for a wide range of species

including mouse, plants and yeast. The effect of

removing the G-spot probes on the analysis of data

will depend on the GeneChip used in the experi-

ment. This is because the number of probes that

contain G-spots differs widely for different

GeneChips (Table 2).

The popular Arabidopsis ATH1 and Human

HG-U133_Plus_2 arrays contain tens of thousands

of probe-sets include G-spot probes. The standard

algorithms such as GCRMA are designed to cope

with outliers and may well be able to cope with a

single G-spot probe (assuming that the probe-set

is not affected by other types of outliers), but will

have difficulty when there are two or more G-spot

probes, since they will have correlated values.

Table 3 indicates the size of the problem for these

arrays: about 5% of ATH1 Probe-sets and >15% of

HG-U133_Plus_2 probe-sets include at least two

G-spot probes.

Figure 8: Ratio of the expression levels of the probes at either end of exon ENSE00000997172.The 2756 CEL files
are in lexicographic order.Unusual GSE groups are indicated.

Table 2: Numbers of G-spot probes in selected
GeneChip arrays

Array HG-U133_
Plus_2

Arabidopsis
ATH1

Drosophila
2

Yeast
genome 2.0

Number of
G-spot probes

32 547 6680 64 36
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The effects can be demonstrated by analysing the

Arabidopsis AtGenExpress developmental series data

set [20] with and without G-spot probes included.

The number of probe-sets identified as differentially

expressed (ANOVA test, P< 0.01, Benjamini and

Hochberg false discovery rate multiple testing

correction) across tissues, changes from 22 410 with

G-spot included to 22 393 without G-spots, with

22 298 probe-sets common to both and 95 specific

to the analysis with G-spots excluded.Similar results

are obtained when the same analysis is performed to

identify genes differentially expressed by time in the

same data set. The number changes from 18 620

including G-spots to 18 636 excluding G-spots,

with 18 355 common to both analysis and 281

unique to G-spot excluded analysis.

The removal of G-spot probes also has an effect

on the correlation of probe-sets across data sets. The

two probe-sets containing eleven G-spot probes

(257331_at and 261946_at) are very highly corre-

lated (correlation score ¼ 0.917) across the develop-

mental series data. Probe-sets with fewer G-spots are

also highly correlated, for example the probe-sets

265369_s_at and 263560_s_at (both containing

seven G-spot probes) have a correlation score of

0.936 across the leaf samples of the developmental

series. Removal of the G-spot probes reduces this

correlation to 0.247, indicating that these probe-

sets are probably not correlated and the high corre-

lation score is due to the G-spot probes. Similar

results are found with probe-sets containing fewer

G-spots.

These results demonstrate that the inclusion of the

G-spot probes could produce misleading results

when analysing data to identify differentially

expressed genes or producing gene interaction net-

works from correlation scores.

The study of the effects of single nucleotide poly-

morphisms (SNPs) on hybridisation patterns seen in

GeneChips has been undertaken by several groups.

The study by Kumari et al. [21] noted that analysts of

GeneChips should consider the location of SNPs in

order to not miss valuable information, whilst Alberts

et al. [22] observed that genetic variation affects

hybridisation patterns. Our own analysis indicates

that there is not a strong relationship between the

location of a SNP within a probe and the corre-

sponding impact on the probe’s behaviour with

respect to the other probes within a probe-set.

A cross-tabulation of probes (SNP: yes/no; outlier:

yes/no) shows no evidence that SNPs lead to outlier

probes. Moreover, we find that almost half of the

probes which contain SNPs and are outliers also con-

tain runs of guanine (G-spots) or CCTCC (the

primer spacer). The existence of multiple sources of

outliers means that care needs to be taken when

interpreting why a particular probe appears to be

slightly different to its peers from the same probe-

set in any single experiment.

We also find that groups of probes which map

uniquely to exons in the antisense direction are fre-

quently not correlated with each other. But the

intensities from such antisense probes, which also

contain either G-spots or CCTCC, may show

enhanced correlations with their respective families

of outliers, e.g. Figure 2. The existence of apparent

expression from a subset of probes may act to confuse

the interpretation of searches for antisense expression

on Affymetrix GeneChips.

Motifs related to chip preparation
We have studied the relative impact of the G-spot

and the primer spacer upon the correlations seen in

GeneChip surveys. We have checked whether the

high correlations between pairs of antisense probes

were provoked either by the occurrences of G-spots

or by the occurrences of CCTCC. Langdon et al.
[12] showed that modifying CDFs, by removing

probes containing G-spots, led to improvements in

the ability of RMA to identify true positives in the

spike-in experiments, using the Affycomp tool of [2].

We have repeated this experiment, by removing

probes containing CCTCC, but find that in this

case there is little change to the results. In conjunc-

tion with the correlation analysis, this indicates that

the G-spot effect is stronger than the CCTCC motif

effect in causing outlier probes. This is not surprising

since the 5-base CCTCC motif will be naturally

less prevalent than the 4-base GGGG motif.

Table 3: Numbers of G-spot probes in probe-sets,
and numbers of probe-sets, for two popular GeneChip
arrays

Number of
G-spot probes

Number of
probe-sets

1 2 3^5 6^11 Total With
G-spot
probe

Arabidopsis ATH1 4031 914 224 11 22810 5180
HG-U133_Plus_2 10824 5251 2920 174 54660 19169
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Table 4 gives information concerning the prevalence

of these probes.

Although there are fewer CCTCC probes, they

can nevertheless be devastating in their effect on

the interpretation of gene prevalence, as Figure 9

indicates. This heatmap shows the correlations

between the 11 probes in probe-set 396_f_at,

designed for erythropoietin (EPOR) and the 16

probes in probe-set 47571_at, designed for the zinc

finger gene 236 (ZNF236). All 11 probes in the first

probe-set contain CCTCC as do 9 of the probes in

the second probe-set. A glance at the figure quickly

reveals which probes these are. It seems very unlikely

that either probe-set is fit for purpose.

Other motifs
The earlier discussion revealed that entire groups of

CEL files showed biased results for probes with par-

ticular motifs. The most extreme case was the

inflated values in some groups for probes containing

the TTTTTT sequence, but these were not the

only affected groups. We particularly noted strong

biases involving probes containing the TAT motif

in GSE3678, involving all of AAAA, ACTGC,

TGGGA and GCCA in GSE6021 and GSE6022,

and involving AGA in GSE2125. We suspect that

these biases are due to variations in preparation of

the material, though the nature of the tissue being

analysed may be relevant. It would appear that

about 5% of GSEs are associated with some bias of

this type.

The effect of the scanner
In general it is rather difficult to be sure of the rela-

tive contributions of the scanner, the washers and the

laboratory itself, on the clarity with which data are

visualised, though the extreme case represented by

the cloud of data points at the top of Figure 4 is

certainly associated with the scanner. That particular

scanner was known to be faulty and was being

Figure 9: Heatmap showing unwanted correlations between two unrelated probe-sets. The correlations are
between probes containing the CCTCC motif. Key as for Figure 2.

Table 4: Prevalence of the CCTCC motif for two
popular GeneChip arrays

Number of probes containing
the CCTCCmotif

Number of
G-spot probes

1 2 3^5 6^11

Arabidopsis ATH1 3273 870 167 5
HG-U133_Plus_2 7959 2410 517 17
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adjusted by Affymetrix technicians during the period

in which high blurring occurred. We have recently

downloaded a further 10 000 CEL files from GEO

and can reassure users that the scanner is no longer

associated with highly blurred data. Nevertheless,

it appears that the vast majority of CEL files are

noticeably blurred (as Figure 4 suggests). This will

affect all probes. Results will not be biased with

respect to genes, but high expression levels will

be under-stated and low expression levels will be

over-stated.

Trapped bubbles, scratches, etc
Most CEL files appear to contain minor imperfec-

tions. Although the numbers of affected probes are

small (relative to the number of probes on an

array), about one CEL file in three contains at

least one 5� 5 region in which a majority of the

probes have an extreme value (a value that, after

standardisation, is >3 SDs from the normal value

for that probe). About 1% of CEL files have as

many as 500 (overlapping) flawed regions of

this type.

Outlier CEL files
As Figure 7 suggests, only about 0.2% of CEL

files have means that are >4 SDs from the median.

Such files should most probably be discarded, as

should the 0.1% of CEL files that have probes with

values having a variance <4 SDs below that usually

observed.

Degradation
Figure 8 suggests that, as one would expect, there is

noticeable degradation in the majority of CEL files.

We are developing a procedure to quantify that deg-

radation (in terms of proportion per base) so that in

future it may be possible to compensate for the deg-

radation and thereby provide more coherent probe-

sets. Figure 8 demonstrates that about 2% of the files

that we examined were so severely degraded that

their worth was questionable.

CONCLUSIONS
The curse of dimensionality applies to post-genomic

experiments which report the expression of tens of

thousands of genes in only a few conditions. Many

of the analysis problems previously faced by users

of microarray experiments will likely be faced

by analysts of ultra-high-throughput sequencing

experiments in the future. It is therefore probable

that many of the ideas developed to analyse micro-

array data can be recycled. Although we have

focussed here on the mining of GeneChips, we

expect that once large amounts of new sequence

data are deposited in public databases, similar biases

will be found. Moreover, it is possible that once this

data has been produced, the community will start to

move onto next–next-generation technology, and

be, in all likelihood, facing the curse of dimension-

ality once more. Since this cycle could repeat indefi-

nitely, it is important to establish how best to mine

large surveys of expression data, of whichever fla-

vour, in order to establish what biology can be

inferred from such a wealth of untapped data.

A central part of this endeavour will be to develop

a detailed understanding of the causes of imperfec-

tions in the data. The widespread uptake of

Affymetrix technology, using standardised probe

and chip designs, hybridisation protocols and scan-

ners, means that the GeneChip data now in GEO

provides a wonderful opportunity to develop this

new area of science. We hope that this review

helps to highlight the rapid progress being made in

this direction. The authors of many papers utilising

Affymetrix GeneChips will have only scratched the

surface of understanding what their expression values

are telling them about their biological system of

interest, and analysis improvements can be widely

applied. Moreover, the data has resulted from large

investments of time and money by scientists, and

their funding sources. Importantly, in the current

economic climate, this novel area of science is

incredibly cost-effective as it allows us to mine

hundreds of thousands of GeneChips only a few

years after some of the community balked at the

cost of generating a handful of such experiments.

Mining large surveys of GeneChip data is starting

to identify probes that show unusual behaviour. The

existence of correlations between outliers may result

from different processes affecting particular sub-

sequences within the 25mer sequence. One such

family has been associated with how the RNA is

prepared for hybridisation and another family has

been associated with how probes in close proximity

interact with each other. But in both of these

cases a combination of identifying individual cases

of outliers [10, 13], and a search for enhanced

correlations, such as described here and in [11],

provide effective ways of identifying which probes

are not reliable target RNA measurements.
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Moreover, our strategy of searching for correlations

in probes which should not be correlated has enabled

us to identify a further group of correlated outliers,

resulting from how the raw image is captured. Light

from bright probes leaks over into the neighbouring

cells. All neighbours of bright probes will show cor-

related changes in the amount of leaked light, and

the fraction of light will depend upon the optical

properties of the scanners. We hypothesise that

there could be other biases affecting subsets of the

probes on GeneChips. We believe our strategy of

studying outlier correlations will be effective at iden-

tifying the non-biological causes of other families of

outliers. We are developing methods to perform this

analysis [23].

SUPPLEMENTARYMATERIAL
Supplementary material is available at BFGP online.
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Key Points
� Our results arebased onmeta-analysis of thousands of CEL files.
� Individual probes with particular motifs, e.g. G-spots and

CCTCC, maymislead.
� Some CEL files are compromised by blur.
� The blur from scanners is time-dependent.
� RNAdegradationmay seriously affect some probe values.
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