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Past studies have suggested that thermal dissociation analysis of nucleic acids hybridized to DNA microar-
rays would improve discrimination among duplex types by scanning through a broad range of stringency
conditions. To more fully constrain the utility of this approach using a previously described gel-pad microarray
format, artificial neural networks (NNs) were trained to recognize noisy or low-quality data, as might derive
from nonspecific fluorescence, poor hybridization, or compromised data collection. The NNs were trained to
classify dissociation profiles (melts) into groups based on selected characteristics (e.g., initial signal intensity,
area under the curve) using a data set of 21,044 profiles derived from 186 probes hybridized to a study set of
RNA extracted from 32 microbes common to the human oral cavity. Three melt profile groups were identified:
one group consisted mostly of ideal melt profiles; another group consisted mostly of poor melt profiles; and,
the remainder were difficult to classify. Screening of melting profiles of perfect-match hybrids revealed
inconsistencies in the form of melting profiles even for identical probes on the same microarray hybridized to
same target rRNA. Approximately 18% of perfect-match duplex types were correctly classified as poor.
Experimental variability and deviation from ideal melt behavior were shown to be attributable primarily to a
method of local background subtraction that was very sensitive to displacement of the grid frames used for
image capture (both determined by the image analysis system) and duplexes with low binding constants.
Additional results showed that long RNA fragments limit the discriminating power among duplex types.

The human oral cavity is inhabited by possibly more than
500 microbial species, present either free in saliva or organized
in complex multispecies biofilms attached to the surfaces of
teeth and oral tissues (21, 34). The general composition of the
oral microbiota has been studied using a variety of approaches,
early culture-based studies more recently being complemented
and extended by molecular characterization (16, 22, 25, 43, 50).
However, established approaches are not suited to intensive
and extensive monitoring. Molecular techniques such as clone
libraries, quantitative PCR, and fluorescent in situ hybridiza-
tion analyses, although informative, are labor intensive and
impractical for routine monitoring. Thus, we anticipate that
the development of tools that provide high-fidelity data in a
high-throughput format will have significant utility, both as a
diagnostic aid for oral diseases such as carries and periodontal
disease and for identifying relationships to other disease states
that may not be monocausal. DNA microarrays offer one type
of highly multiplexed technology, using hybridization to mul-
tiple diagnostic sequences to identify different microbial pop-
ulations or genes of functional significance.

Among the large variety of recent microarray technology
platforms (see the review in reference 6), two formats have
been most often used for microbial species identification: pla-
nar microarrays (51) and gel-pad microarrays (4, 12, 17, 20).
Gel-pad microarrays, composed of oligonucleotides in a poly-

acrylamide gel-pad matrix attached to a glass surface, offer a
number of advantages over planar microarrays because (i) they
have a greater dynamic range due to the immobilization of a
greater number of oligonucleotides (from 3 to 300 fmol) on the
surface covered by each gel-pad (17), (ii) when used in com-
bination with a temperature-controlled reaction chamber they
can be employed to monitor arrays of probes that have differ-
ent kinetics of association and dissociation (10), and (iii) when
used under conditions that approximate equilibrium, thermo-
dynamic analyses of probe-target duplexes in gel-pads have
been reported to correlate to data obtained in solution (13),
demonstrating a link to well-established principles of nucleic-
acid chemistry (9, 29).

In conventional applications, fluorescent dye-labeled target
nucleic acids hybridize to a short complementary oligonucleo-
tide probe immobilized in a gel-pad, which yield stable du-
plexes under appropriate hybridization conditions. As the tem-
perature of a microarray reaction chamber is increased, bound
nucleic acid dissociates from probes, and there is an overall
decrease in retained fluorescent dye (as inferred from signal
intensity). Studies using synthesized targets (i.e., oligonucleo-
tides) and fragmented nucleic acid extracted from microbes in
environmental samples have demonstrated that it is possible to
distinguish between target and nontarget sequences that differ
by a single internal mismatched base-pair (12, 47, 48). This
level of discrimination is needed to resolve variants of highly
conserved genes (e.g., those encoding the rRNAs). Numerous
studies have been conducted using gel-pad microarrays (8, 11,
12, 20, 23, 24, 26, 45, 47, 48, 49) because melting profiles of
probe-target duplexes are thought to offer better discrimina-
tion between target and nontarget sequences than planar mi-
croarrays, which typically depend on signal intensity (SI) values
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obtained following hybridization and wash conditions adjusted
to an appropriate (average) stringency. (The term “melting
profile,” used throughout this article, refers to nonequilibrium
dissociation curves.) Based on these studies, we proposed that
nonequilibrium dissociation analyses, in concert with advanced
statistical approaches, could be used to develop a diagnostic
tool for identifying microorganisms in complex communities
such as that found in the human oral cavity.

The focus of this study was to evaluate the performance of
gel-pad microarrays under established conditions, which in-
cludes the same nucleic acid sample preparation protocols and
concentrations, and image analysis software. The evaluation
employed a set of DNA probes complementary to the rRNAs
of major groups and species of microbes known to inhabit the
human oral cavity. Preliminary screening of numerous melting
profiles revealed inconsistencies in signal intensity values and
discrepancies in the form of melting profiles, even for identical
probes on the same microarray hybridized to the same target.
However, our working hypothesis is that the general form of a
melting profile in gel-pad microarrays (within the dynamic
range of the detection system) should be sigmoid-shaped and
not change from one duplex to the next, and that observed
differences are due to experimental variations. Modeling the
observed melting profiles using a conventional approach (i.e.,
fitting to a theoretical curve) (29) was not possible since melt-
ing profiles in gel-pad microarrays cannot be considered as
reflecting an equilibrium process (see Discussion). Addition-
ally, we tried to infer a function that best describes melting
profiles. This function was able to explain only a small fraction
of melting profiles.

Since no underlying model for interpreting gel-pad melting
profiles exists, we sought to determine the sources of the in-
consistencies by training artificial neural networks (NNs) to
recognize patterns in the form of melting profiles. Artificial
NNs can be used to recognize patterns in data such as the
variability and shape of melting profiles and to classify melting
profiles (e.g., ideal or poor) based on their melt characteristics
(e.g., initial signal intensity, area under the curve). NNs are
implemented as computer programs and consist of networks of
neurons that receive information from inputs or other neurons,
make independent computations, and pass their outputs to
other neurons in the network (1, 3, 42). Once an NN is prop-
erly trained, the optimized weighting factors can be used to
generate a model that provides information on the relation-
ships among (input) variables such as melt characteristics and
different types of melting profiles (outputs) such as those typ-
ical of perfectly matched duplexes versus those of duplexes
containing multiple mismatches.

The objectives of this study were: (i) to develop and evaluate
a software tool for calculating the variability and shape of
melting profiles and (ii) to determine the main sources of
inconsistencies that affect interpretation of melting profiles.

We report the development of a melting profile perfor-
mance (MPP) calculator that correctly determined that �18%
of perfectly matched duplexes yielded highly variable (i.e.,
poor) melting profiles. Further experiments revealed that the
main sources of inconsistencies contributing to the poor melt-
ing profiles were: the placement of the grid frames and the
background subtraction method used by the image analysis
system. Moreover, duplexes with low binding constants had

highly variable melting profiles because SI values approached
the detection limit of the system.

MATERIALS AND METHODS

RNA preparation. RNA was either isolated from the log phase grown cultures
or in vitro transcribed from a cloned rRNA gene (Table 1). Isolation was
performed using the FastRNA BLUE kit (Q-BIOgene, Irvine, CA), following
the manufacturers instructions by bead beating (two times for 30s each), phenol
chloroform extraction, and isopropanol precipitation as previously described
(44). To produce in vitro transcribed RNA, a T7 RNA polymerase kit (Invitro-
gen, USA) was used. The RNA was subjected to fragmentation and labeling with
lissamine-rhodamine B ethylenediamine dye according to the previously pub-
lished protocol, with slight modifications (4, 12). Briefly, 10 �g of total RNA was
preheated at 95°C for 4 min in a 1.5 ml reaction tube. Freshly prepared labeling
cocktail (150 �l) containing 5 mM 1,10-phenanthroline, 0.5 mM CuSO4, 1 mM
lissamine-rhodamine B ethylenediamine (Molecular Probes, Inc., Eugene,
Oreg.), and 20 mM sodium phosphate (pH 7.0) was heated at 95°C for 30s.
Hydrogen peroxide (2 mM) and freshly prepared 20 mM NaCNBH3 were added
to the cocktail, and the mixture was added to the reaction tube. After incubation
of the mixture for 10 min at 95°C, the reaction was stopped by adding 9 �l of 500
mM EDTA (pH 8.0). Fragmented nucleic acids were precipitated by adding 15
�l of 5 M ammonium acetate and 450 �l of 100% (vol/vol) ethanol followed by
a 10 min incubation at �80°C. Nucleic acids were recovered by centrifugation at
13,200 rpm for 10 min, excess fluorescent label was removed by washing twice
with 500 �l of 100% (vol/vol) ethanol, dried, and resuspended in 20 �l of diethyl
pyrocarbonate-treated water.

For the experiments involving the affects of image processing and diffusion on
melting profiles, and the affects of different binding constants on SI values, target
oligonucleotides (Supplementary Table S1) were 5�-labeled with Oregon Green
(QIAGEN, Valencia, CA) while native rRNA target sequence from Bacteroides
forsythus was fragmented and then randomly labeled with Cy3. Briefly, 4 �l
aqueous solution of native RNA (2 �g/ml, isolated the same way as above) was
hydrolyzed in 2 �l of 0.1 M NaOH for 5 min at 35°C, neutralized by adding 2 �l
of 0.1 M HCl to the reaction mixture, and labeled using the Micromax ASAP
RNA labeling kit (Perkin Elmer, Boston, MA). The length of RNA fragments
was determined by using BioAnalyzer (Agilent Technologies, USA).

Oligonucleotide array fabrication. Oligonucleotides were designed by using
the probe design function of ARB software (http://www.arb-home.de) (27). The
specificity of the probe for the target was checked with the probe check function
in the ARB software, the BLAST search (2) at the National Center for Biotech-
nology Information, and the Probe Match program in Ribosomal Database
Project II (28). Self-complementarities were also examined by using Ribosomal
Database Project II. Oligonucleotide probes, ranging in length from 13 to 25
nucleotides (Table S1 in the supplemental material), were synthesized with an
amino linker at the 3�-end and fabricated at Argonne National Laboratory (52).
The microarray matrix containing polyacrylamide gel pads (100 by 100 by 20 �m)
spaced 200 �m apart from each other and fixed to a glass slide, was manufac-
tured by photopolymerization procedure (52). A total of 3 nl of 1 mM amino-
oligonucleotide solution was applied to each gel element containing aldehyde
groups (45) which were designed and implemented by a robot arrayer (52). A
total of 186 oligonucleotide probes were immobilized with the aldehyde group of
the activated gel pad on the microarrays as described previously (40).

Hybridization and washing protocols. Hybridizations were carried out at room
temperature (20°C) for 12 h in 40 �l of hybridization buffer containing 5 to 10 �g
of each target RNA, 0.9 M NaCl, 20 mM Tris-HCl (pH 8.0), and 40% form-
amide. Following overnight hybridization, the microarray was washed three times
at room temperature with a washing buffer consisting of 20 mM Tris-HCl (pH
8.0), 5 mM EDTA, 4 mM NaCl and 1% wt/vol Tween 20. After the final wash,
200 �l of washing buffer was added to the imaging chamber (Grace BioLabs,
Bend, OR) for image and melting profile capture.

Image and melting profile capture. To generate melting profiles, the microar-
ray was fixed on a thermotable mounted on the stage of a custom-designed
epifluorescence microscope (State Optical Institute, St. Petersburg, Russia) and
connected with a thermoelectric temperature controller (LFI-3735; Wavelength
Electronics, Inc. Bozeman, MT) and a water bath (Cole Parmer Instruments Co.,
Chicago, IL). The microscope was equipped with fluorescence filters (Omega
Optical, Brattleboro, VT) and a cooled charge-coupled device camera (Princeton
Instruments, Trenton, NJ) and manipulated with a program that allows image
acquisition, processing, and analysis (13). Melting profiles for all probe-target
duplexes were monitored and recorded at 2°C intervals between 20 and 70°C by
increasing the temperature at a rate of 1°C per min. The melting profile exper-
iments were performed in triplicate and repeated on different days. We visually
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inspected each microarray for gross artifacts prior to recording melting profiles.
In total, 13 microarrays were used in this study (n � 104 experiments) and each
microarray was reused multiple times. Analysis of variance of initial signal in-
tensities and MPP scores of universal probes revealed no significant differences
by microarray lot or the number of times the microarray was reused.

To assess the precision and accuracy of the image acquisition system, an
alternative approach was employed by creating a custom-designed module in
V�� (Roper Scientific, Germany). The module controlled the camera, the mi-
croscope, and the Peltier element, and recorded the image at each temperature.
An additional custom-designed program was created in C�� to convert the stack
of images to SI values for each gel-pad on the microarray.

In silico prediction calculator. The in silico Prediction calculator (http://noble
.ce.washington.edu/programpage.jsp) evaluates probe and target sequence using
lexicographical matching to yield information on the type of probe-target duplex
(i.e., perfectly matched, P; terminal mismatch, T; internal mismatch, I; more than
two mismatches, N). The position and type of the mismatch (e.g., A, T, G, and
C) was determined for the duplex structure yielding the best match (highest
hybridization score). The hybridization score of a probe to a target sequence was
determined by counting the number of correctly base-paired nucleotides for a
probe at every possible position in a target sequence, starting at the 5�-end of a
target sequence, and moving the probe along the target sequence, one nucleotide
position at a time until the end of the sequence was reached.

Td calculator. The Td calculator was designed to automatically calculate the
experimentally determined Td and slope for each probe-target duplex by using
data obtained from the image acquisition, processing, and analysis software. A

Web based interface for this software is available at http://noble.ce.washington
.edu/programpage.jsp. The interface contains a Readme documentation
describing how to use the software. The documentation contains links to
demonstration files (that can be submitted to the calculator) and specifies
required formatting for input files.

Since calculating the Td using a simple curve fitting yielded inconsistent results
(presumably due to factors affecting the melting profiles, see Discussion), a new
version of the Td calculator (47) was designed to determine the temperature
corresponding to the maximum slope of the signal intensities, which was pre-
sumably related to the transition from duplex to random coil. Multiple regres-
sions lines, consisting of various number of points, were used to determine the
maximum slope. To maximize the number of points used for regression analyses,
normalized SIs, i.e., Xnorm � (Xobs � min)/(max � min) in the range of 0.75 to
0.55 arbitrary units were used as the initial start points for regression lines, and
a lag of 0 to 5 points was used to vary the endpoints, and thus the length of the
regression lines. The minimum number of points used to calculate a regression
line was 5. The program considered all possible slopes and calculated the mean
slope and Td for all slopes meeting the following two criteria: (i) the calculated
Td was within the mean temperature (�1.5°C) of normalized SI values between
0.35 to 0.65, and (ii) the calculated Td fell within a temperature range based on
the normalized SI values of 0.55 and 0.45. The default values for the Td calculator
were experimentally determined.

For each melting profile, the number of regression lines meeting these criteria,
the initial SI, the Td, and the slope of SI values and temperature (dSI/dT), the

TABLE 1. Organisms testeda

Data
set no. Microbial species GI no.b Source No. of replicated

microarray experiments

1 Abiotrophia defectiva 1834295 ATCC 49176c 4
Acinetobacter baumannii 829087 ATCC 19606c 6
Actinobacillus actinomycetemcomitans 173681 Strain JP-2d 3
Actinomyces odontolyticus 853707 ATCC 17929 3
Bacteroides forsythus 10946530 ATCC 43037 2
Brevundimonas diminuta 2580430 ATCC 11568c 4
Butyrivibrio fibrisolvens 15011532 ATCC 19171 3
Enterococcus faecalis 5578753 ATCC 19433c 6
Escherichia coli 174375 TOP10e 2
Fusobacterium nucleatum 4490387 ATCC 25586d 3
Peptococcus niger 45659 ATCC 27731c 3
Peptostreptococcus anaerobius 175621 ATCC 27337c 2
Porphyromonas endodonthalis 294287 ATCC 35406 4
Prevotella denticola 294420 ATCC 35308 4
Propionibacterium freudenreichii 45491 ATCC 6207c 4
Ralstonia eutropha 23821283 ATCC 17697c 5
Staphylococcus aureus 576603 ATCC 25923c 2
Streptococcus bovis 176044 ATCC 9809c 5
Streptococcus gordonii 2183315 DL1d 4
Streptococcus mutans 5578899 ATCC 25175c 5
Streptococcus salivarius 176047 ATCC 25975c 5
Treponema denticola 3712666 ATCC 35405 2

2 Candida albicans 2507 Ted Whitef 3
Candida parapsilosis 17266284 Ted Whitef 3
Capnocytophaga gingivalis 289582 ATCC 33624 2
Desulfovibrio vulgaris 18034282 Judy Wallg 3
Gemella haemolysans 174677 ATCC 10379 2
Haemophilus paraphrophilus 174772 Strain C128d 3
Porphyromonas catoniae 929751 ATCC 51270 2
Porphyromonas gingivalis 294288 ATCC 33277d 1
Rothia dentocariosa 175870 ATCC 17931c 2
Treponema sp. 2586374 Richard L. Lamontd 2

a rRNA was extracted from the following microorganisms and used to hybridized to the DNA microarrays. Shown are the corresponding GI numbers and the number
of replicated microarray experiments for each microorganism.

b genInfo identifier; a unique integer assigned by National Center for Biotechnology Information which identifies a particular sequence.
c Strains were kindly provided by Paul W. Lepp, Stanford University, California.
d Strains were kindly provided by Richard L. Lamont, University of Florida, Gainesville, Florida.
e Invitrogen Inc.
f Ted White, Seattle Biomedical Research Institute, Seattle, Washington.
g Judy Wall, University of Missouri, Columbia, Missouri.
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area under the curve before min/max normalization, and the normalized area
under the curve (i.e., after min/max normalization and zeroing) was recorded.

Data sets used for statistical analyses. Melting profile characteristics and
corresponding in silico predictions of each gel-pad experiment was merged to a
single data set. Data set 1 consisted of melting profiles obtained from 22 known
target sequences (Table 1), 186 probes targeting 16S and 23S rRNA (Table S1 in
the supplemental material), and 81 hybridizations and melting runs, and included
1,017 perfectly matched (P) probe target duplexes, 110 probe target duplexes
containing a terminal mismatch, 2,269 duplexes containing one or two internal
mismatches (I), and 12,188 duplexes containing more than two mismatches (N).
Data set 2 consisted of melting profiles obtained from 10 known target sequences
(Table 1), 186 probe targeting rRNA genes (Supplementary Table S1), and 23
hybridizations and melting runs, and included 276 perfectly matched (P) probe
target duplexes, 21 probe target duplexes containing a terminal mismatch, 604
duplexes containing one or two internal mismatches (I), and 4,559 duplexes
containing more than two mismatches (N).

NN software. An artificial NN package was developed for this project (Neu-
roet) (38, 46) and is available at the web site http://noble.ce.washington.edu
/Neuroet. Unless otherwise specified, the following settings were used for
training NNs: input and output scaling was set to standard linear (0, 1); the
logistic transfer function was used for hidden neurons and pure linear transfer
function was used for output neurons; 80% of the data was used for training,
10% was used for testing, and 10% was used for validating the NN; and,
conjugate gradient error minimization was used as the training method.

The architectures of all NNs were optimized prior to conducting analyses by
adjusting the number of hidden neurons (1 to 8) and identifying the architecture
that provided the best predictive model. Comparison of different predictive
models was conducted by computing their median Akaike’s Information Crite-
rion corrected (AICc) value (35), determining the probability that one model was
better than another, and calculating the corresponding evidence ratio. The AICc
value was used (rather than R-squared) because it balances the complexity of an
NN model (i.e., the number of data records and the number of variables [i.e.,
input variables and number of hidden neurons]) with how well the NN predicts
outputs. The model yielding the lowest AICc score contained the optimal num-
ber of hidden neurons. AICc was calculated using the following equation:

AICc � Nln�SS
N� � 2K �

2K�K � 1	

N � K � 1 (1)

where N is the number of data records, K is the number of input variables used
plus 1, and SS is the sum of squares of the residuals (predicted scores versus
actual scores) (19).

The probability (Pmodel) that one NN model was likely to be more correct than
another was determined using the following equation:

Pmodel�
e�0.5
AICc

1 � e�0.5
AICc
(2)

The evidence ratio (E) was used to assess how more likely one model was to be
correct than another model. E was determined using the following equation:

E �
Pmodel1

Pmodel2
�

1
e�0.5
AICc

(3)

If, for example, the AICc scores of two models differed by 5.0, then E equals 12.2,
meaning that the model with the lower AICc score was about 12 times more
likely to be correct than the other model. However, if AICc score differ by 10,
then E is 148, so the evidence is overwhelmingly in favor of the model with the
lower AICc score.

Identifying the most important inputs for predicting outputs. The relative
contributions of inputs to predicting outputs were determined by using the
Measure Importance of Inputs procedure in the Neuroet package (38, 46).
Fifteen NN models were generated for each input variable (e.g., SI value).
Models that fell into the lower 25th percentile based on their ranked SS were
removed from the analysis because they were considered fixed in local error
minima. The AICc scores of the remaining 11 models were averaged. The
procedure was then repeated for each input variable. The AICc scores of the
inputs were ranked by their value. The probability score and evidence ratio of the
ranked inputs (discussed above) were calculated to determine the probability
that one input (or a combination of inputs), was better than another.

Developing the Quality and Shape calculator. Melting profiles of 4800 probe-
target duplexes from data set 1 were manually scored for their Quality and Shape
values by comparing the profiles to predetermined standards as shown in Fig. 1.
The Quality scoring was based on the disjointedness of adjacent points in the

melting profile. A “smooth” melting profile was scored 0 (Fig. 1A and 1C) while
a melting profile that had one to several disjointed points was scored 0.25 to 1.0
(Fig. 1B, 1D-F), respectively, depending on the amount of noise. The Shape
scoring was based on the overall shape of the melting profile: an ideal shape was
assigned a score of 0, a questionable shape was assigned a score of 0.5, and a
random or not-interpretable shape was assigned a score of 1. The final data set
used for training and testing the NN consisted of a subset of 1500 records (from
the 4,800 melting profiles; i.e., 500 ideal, 500 uncertain, and 500 poor melting
profiles) and 500 records that were generated with random numbers having a
range of 0 to 1.

For each melting profile, the SI values were normalized to a maximum value
of 1 and a minimum of 0. The first 25 SI values were used as input data to train
NNs to predict Quality scores while the first 25 SI values and the Quality scores
were used as input data to predict Shape scores. Hence, the Shape score con-
sidered both the disjointedness of adjacent points as well as the shape of melting
profiles.

Quantifying the effects of noise on Quality and Shape scores. To determine
the effects of noise on Quality and Shape scores, 10 melting profiles that were
considered ideal by visual interpretation were selected from a single microarray
experiment. Fixed amounts of randomly generated noise were then added to
each of the ten profiles at levels of approximately 0, 0.1, 0.5, 1.0, 5.0, 10, and 50%.
The Quality and Shape scores were computed for each melting profile.

Multivariate statistical analysis. Principal-component analysis (PCA) was em-
ployed to examine the distribution of melt characteristics relative to duplex types
(e.g., P, I, or N) and to construct ordination plots.

Thermodynamic calculations. The thermodynamic properties (
G0) of each
perfect-match duplex were calculated using OligoAnal (31). With exception to
temperature and oligonucleotide length, we used all default parameters. For our
calculations, the temperature was set to 20°C and oligonucleotide length was
adjusted accordingly.

FIG. 1. Example criteria used to classify melting profiles. A to E,
Actual melting profiles; F, Random profile. Quality criterion: A and C
have low scores because they are smooth; B and D to F have disjointed
points as indicated by the arrows and have high scores. Shape criterion:
A and B have low scores because they have ideal shapes.
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RESULTS

Quality and Shape scores of melting profiles. Results ob-
tained by using the Optimize hidden neurons procedure in the
Neuroet package revealed that the optimal number of hidden
neurons needed to predict Quality and Shape scores was two
(data not shown). The NNs accounted for approximately 78 to
93% of the variability in the data, indicating that they provided
reasonable predictions (Table 2). The concordance across rows
of Table 2 (i.e., among training, testing, and validation data
sets) indicated that none of the NNs were under- or over-
trained, and that the architecture of the NNs was appropriate
for the data. Note that there was little difference in the R-
square values of Shape scores indicating that having two Qual-
ity score as inputs (Shape 2) rather than one (Shape 1) did not
substantially improve shape predictions. The equations of the
trained NNs were extracted, checked for accuracy using a
spreadsheet (MS Excel), incorporated into a C�� program,
and made into a web-accessible tool (i.e., Melt Quality and
Shape Calculator, http://noble.ce.washington.edu/programpage
.jsp).

Figure 2 shows the relative importance of NN inputs for
predicting Quality and Shape scores. Sudden increases in
Pmodel values (and decreases in E ratios) of the ranked inputs
were used as limits for interpreting the importance of inputs
(data not shown). There were no differences in the importance
of inputs between the two Quality scores indicating that dif-
ferent NNs yielded consistent results. The first 8 SI values,
representing SI values at 20 to 34°C, the 11th SI value, repre-
senting 40°C, and the last SI value (i.e., input 25), representing
the SI value at 68°C, were more important for predicting Qual-
ity scores than SI values at other temperatures (e.g., 36, 38°C,
and 42 to 66°C) (Fig. 2, upper panel). These findings indicated
that Quality scores were based on SI values at the beginning,
middle, and end of the melting profile. However, this was not
the case for Shape scores (Fig. 2, lower panel), since the first
nine SI values, representing SI values at 20 to 36°C, and the
Quality score(s) used as NN inputs were more important for
predicting the Shape scores than the SI values at other tem-
peratures (e.g., 38 to 68°C). These findings indicated that the
beginning of the melt and the Quality score(s), as interpreted
from the disjointedness among adjacent SI values, are impor-
tant for predicting the shape of melting profiles.

To quantify the amount of noise needed to affect Quality
and Shape predictions, incremental amounts of random noise
were added to ideal melting profiles. As anticipated, adding
noise to melting profiles increased the value and variability of
the Shape and Quality scores (Fig. S1 in the supplemental
material). These experimental results indicate that Quality and

Shape scores derived from NNs were able to correctly classify
the quality and shape of melting profiles.

Equations defining the relationship between SI values and
Quality and Shape scores were extracted from the trained NNs
and incorporated into an application on the web. The Melt
Quality and Shape Calculator and documentation files are
available at http://noble.ce.washington.edu/programpage.jsp.

Melting profile performance (MPP) calculator. Although
the Melt Quality and Shape Calculator provides information
on variability and shape of melting profiles, it does not con-
sider other melt characteristics such as the area under the
curve or initial SI values. To account for these other melt
characteristics, we developed a calculator that predicts melting
profile performance using melt characteristics shown in Table

FIG. 2. Importance of NN inputs to predict Quality (top panel) and
Shape (bottom panel) scores relative to an idealized melting profile.
The relative importance of each input was based on rank order and
their corresponding Pmodel and E ratio values (see text). Shaded areas
(and solid black circles) indicate inputs that were statistically more
important than the other inputs (white circles). Note that for Shape
scores (lower panel), NN inputs 26 and 27 were also found to be
important for predicting Shape scores. Inputs 26 and 27 correspond to
Quality 1 and 2 scores, respectively.

TABLE 2. R-squared values of observed versus predicted scores

Variable

R2 by data set (n � 2,000)

Training
(n � 1,600)

Testing
(n � 400)

Validation
(n � 400)

Quality 1 0.82 0.81 0.78
Quality 2 0.82 0.81 0.78

Shape 1 0.89 0.90 0.93
Shape 2 0.89 0.89 0.89

VOL. 71, 2005 MELTING PROFILE ANALYSES FROM DNA MICROARRAYS 8667



3 as inputs and using information from PCA as a guide to
classify ideal from poor melting profiles. Note that ideal and
poor terms are not the same as high and low scores for Quality
and Shape. A balanced data set was constructed from data set
1 and analyzed by PCA. The balanced data set consisted of
equal number (n � 976) of perfectly matched (P) duplexes,
duplexes containing internal mismatches (I), and duplexes con-
taining more than two mismatches (N) extracted from data set
1. The following characteristics were used for PCA: (i) initial
signal intensity, (ii) true signal intensity area (i.e., the area
under the curve without normalization), (iii) normalized signal
intensity area (i.e., area under the curve with min/max normal-
ization), (iv) number of regression lines used to estimate the
dissociation temperature, (v) Quality scores 1 and 2, and (vi)
Shape scores 1 and 2.

Results from PCA revealed that 81% of the total matrix
variance was explained by two principal axes, with PCA1 ex-
plaining 65% of the total matrix variance and was correlated
strongly with the following variables: initial signal intensity, the
normalized area under the curve, number of regressions used
and Quality and Shape scores (Table 3), and PCA2 explaining
16% of the total matrix variance, was strongly correlated to the
area under the curve (Table 3). An ordination plot revealed
that one large group distributed along the principal component
1 (PCA1) had considerable coherence. This coherence was
further examined by dividing the ordination plot into subplots
based on duplex type (e.g., P, I, N) (Fig. 3). Most of the P-type
(84.2%), some of the I-type (49.7%), and few of the N-type
13.0%) melting profiles occurred on the left side of �2.5 on the
x axis. Melting profiles in this region had low Quality (X� Std;
0.08 � 0.06) and Shape scores (0.05 � 0.07) indicating that
they were suitable for statistical interpretation. Few of the
P-type (12.1%), some of the I-type (45.6%), and most of the
N-type (81.0%) melting profiles occurred on the right side of
�2.0 on the x axis. These profiles had high Quality (0.75 �
0.10) and Shape (1.0 � 0.01) scores indicating that they are
highly variable. These results indicate that the position of melt-
ing profiles on the ordination plot was related to melt charac-
teristics of the duplex types (e.g., P, I, and N).

The melting profile performance calculator assigned each
melting profile a score based on its distribution in the ordina-
tion plot and, in some cases (e.g., depending on its position) by
examining the melt characteristics of individual duplexes. An
MPP score of 1 was manually assigned to the cloud of profiles
distributed between approximately �1.5 and �6.0 in the x axis

and �2.0 and 11.0 in the y axis (Fig. 3). Melting profiles
immediately to the right and/or surrounding the cloud were
assigned a MPP score of 0.5 (since they were difficult to classify
them as either 1 or 0), and the remaining profiles were as-
signed a score of 0. An NN was trained to establish the rela-
tionship between the eight melting profile characteristics (ini-
tial SI, area under the curve, normalized area under the curve,
number of regression lines used to calculate the Td, and Qual-
ity and Shape scores) and their corresponding MPP score.

FIG. 3. Ordination plots produced by PCA of melting profile vari-
ables. P, perfectly matched probe target duplexes; I, duplexes contain-
ing an internal mismatch; N, duplexes containing more than two mis-
matches.

TABLE 3. Correlation coefficients of variables relative to
PCA axes (n � 2,928)

Variable

Pearson correlation by
PC axis:

PC1 PC2

Initial signal intensity �0.74 0.54
True signal intensity area �0.67 0.70
Normalized signal intensity area �0.70 0.07
Number of regressions used �0.73 �0.07
Quality 1 0.86 0.38
Quality 2 0.83 0.40
Shape 1 0.95 0.16
Shape 2 0.91 0.14
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The optimal number of hidden neurons was determined by
training NNs (multiple times) using one to eight hidden neu-
rons, and identifying the architecture yielding the lowest AICc
score. The lowest AICc score occurred for NNs having five
hidden neurons, thus the optimal architecture used to train the
NN was eight inputs (one for each variable), five hidden neu-
rons, and one output neuron (i.e., one for the MPP score).
Eighty percent of the data were used to train the NN, 10% of
the data were used to test the NN and the remaining 10% were
used to validate the NN. The final R-squared values of train,
test, and validation data sets were close to 1 (e.g., 0.96), indi-
cating considerable similarity. We determined the importance
of melting profile characteristics to predict MPP scores and
found that the initial SI value, the number of regression lines
used to calculate the Td, and the Shape1 score provided the
best combination of characteristics to predict the MPP score,
accounting for approximately 90% of the variability (data not
shown). The weights and biases extracted from the NN were
used to calculate the MPP score from melting profile charac-
teristics.

The relationship between the predicted MPP score and po-
sitions on the ordination plot for the balanced data set are
shown in Fig. 4 (upper panel). Approximately 48.5% of the
balanced data set was classified as ideal melting profiles, 5.7%
could not be classified, and the remaining 45.6% was classified
as poor (Fig. 4, lower panel).

The relationships between MPP and duplex type are shown
for data sets 1 and 2 (Table 4). Both data sets contained
disproportionately more Is and Ns than the balanced data set.
The MPP scores showed a general trend that a greater number
of perfectly matched probe-target duplexes were classified as
ideal than duplexes with two or more mismatches (from left to
right in Table 4). Similar results were obtained for both data
sets indicating that the balanced data set used to develop the
equations relating melt characteristics to MPP scores was able
to generalize predictions.

Figure 5 shows MPP calculator results for perfectly matched
duplexes involving probes 62 (Univ 1390) and 438 (S-P-Grpos-
1200-a-A-13). For probe 62, 89.5% (145/162) were classified as
ideal, 3.1% (5/162) were classified as uncertain, and 7.4% (12/
162) were classified as poor. For probe 438, 33.7% (33/98)
were classified as ideal, 6.1% (6/98) were classified as uncer-
tain), and 60.2% (59/98) were classified as poor. Not all melt-
ing profiles are shown in Fig. 5 for clarity. Relative to probe 62,
the initial SI values of probe 438 (perfect-match duplexes)
were consistently low (Fig. 6), indicating that (in general)
probes with low binding constants tended to be classified as
having poor melting profiles by the MPP calculator. Con-
versely, probes with high binding constants tended to have
ideal melting profiles (Fig. 6). Negative SI values are due to the
method used for background subtraction (i.e., Fotin et al. [13];
discussed below).

To resolve the relationship between initial signal intensities
of probes and their corresponding binding constants, we cal-
culated a proxy for the binding constant, i.e., the 
G020 for all
perfect-match duplexes. Figure 7 shows the relationship be-
tween initial SI values and 
G0

20 for duplexes that were rep-
licated at least 40 times. Approximately 83% of the variability
in the data was explained by mean initial SI values and 
G0.
Note that probe 438 had a higher 
G0 (�21.8 kcal/mol) than

probe 62 (�33.8 kcal/mol), which supports the notion that
duplexes with high binding constants (negative 
G0

20) tend to
have ideal melting profiles.

The distribution of initial SI values of duplexes with two or
more internal mismatches (from data set 1) is shown in Fig. 8.
Most of these duplexes were classified as having poor melting
profiles (82.1%, Table 4) and low initial SI values, indicating
that they were close to the detection limit of the system. Of the
14.9% (Table 4) in data set 1 that were classified as having
ideal melting profiles, most duplexes had initial SI values that
were comparable to those of perfect-match duplexes (Fig. 6).
Lexicographical analysis of these probes did not reveal any
particular aspect of their sequence (e.g., length, GC content)
which accounted for the preponderance of ideal melting pro-
files (data not shown).

These results are consistent with: (i) our previous finding
that the initial SI values are one of the three critical factors
used by the MPP calculator to classify melting profiles, and (ii)

FIG. 4. Melting profile performance scores by position on the or-
dination plot. Top panel, two principal components; bottom panel,
absolute duplex performance scores (predicted by MPP calculator)
relative to PCA1. Blue dots represent melting profiles with duplex
performance scores of �0.75; red dots represent profiles with scores
between 0.25 and 0.75; black dots represent profiles with scores of
�0.25.
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the notion that melting profiles with low initial signal values
approach the detection limit of the system, and for this reason,
produce inconsistent results which are difficult to interpret.

Effects of image processing on melting profiles. Given the
significant number of perfectly matched duplexes yielding poor
melting profiles, we investigated the effects of image processing
on melt profiles by comparing three background subtraction
methods. Raw image stacks (n � 120 images) were collected
from thermal dissociations (20°C to 70°C) of three different
oligonucleotide duplexes. Each image in a stack represented

the SI value of a probe-target duplex collected at one temper-
ature. To simulate subtle variations in placement of the frame
used to collect averaged image SI values from the gel-pad, 20
different frame placements of the same image were produced
by randomly displacing the x and y coordinates of the frame 20
times (i.e., a change of �4 pixels representing a variation of 0
to 6.7% total gel-pad area). This displacement never removed
the gel pad from the inner frame. All three background sub-
traction methods were applied to the same 20 modified image
stacks.

The Fotin et al. (13) background subtraction method in-
volves subtracting background using the average SI values im-
mediately surrounding the frame and can be defined by the
equation:

SI �
Iinner � Bouter

Bouter
(4)

where Iinner refers to the averaged intensity of the inner frame
(180 �m by 180 �m) and the Bouter refers to the averaged
intensity of the space between the inner and outer frames (230
�m by 230 �m) (Fig. 9). Specifically, in this study the size of the
inner frame was 31 by 31 pixels (approximately 150 by 150 �m)

FIG. 5. Interpretation of melting profiles for perfectly matched
probe-target duplexes by the MPP calculator. Top panel, a probe
(Univ 1390) that tends to yield high initial signal intensity values; lower
panel, a probe (S-P-Grpos-1200-a-A-13) that tends to yield low initial
SI values. Ideal profiles, blue lines; uncertain profiles, red lines; and
poor profiles, black lines. Not all melting profiles are shown for clarity.

FIG. 6. Distribution of initial SI values of perfectly matched probes
from data set 1 by MPP type. Initial SI values of all perfectly matched
melting profiles are shown as shaded background (i.e., including un-
certain profiles). The range, mean � standard deviations (gray) of
initial signal intensities for probes 438 (S-P-Grpos-1200-a-A-13, 
G0 �
�21.8 kcal/mol) and 62 (Univ 1390, 
G0 � �33.8 kcal/mol) are pre-
sented in the horizontal bars above.

TABLE 4. Classification of melting profile performance by duplex type

Data set Melting profile
performance % Classification typea by probe target duplex type (no. of samples):

1 P (1,017) T (110) I1 (1,185) I2 (1,084) N (12,188)
Ideal 85.8 87.3 72.0 43.2 14.9
Undefined 1.7 2.7 2.0 4.2 3.0
Poor 12.5 10.0 26.0 52.7 82.1

2 P (276) T (21) I1 (322) I2 (282) N (4,559)
Ideal 66.3 42.9 56.2 33.7 19.4
Undefined 2.9 0.0 5.9 10.3 5.8
Poor 30.8 57.1 37.9 56.0 74.8

a P, perfect match; T, terminal mismatch; I1, one internal mismatch; I2, two internal mismatches, N, more than two mismatches.
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and that for the outer frame was 39 by 39 pixels (in accordance
with Fotin et al. [13]), since these sizes are routinely used in the
laboratory and were the default settings for data acquisition.
The Yershov (52) background subtraction method involves
subtracting background using the total SI values immediately
surrounding the frame and can be defined by the equation:

SI � Iinner � Bouter (5)

where Iinner refers to the average SI of the inner frame (141 �m
by 141 �m) and the Bouter refers to the average SI of the space
between the inner and outer frames (200 �m by 200 �m). A
third background subtraction method (developed by us) in-
volves subtracting the average or total SI value of the last

image (Ilast) of the pad from that of each image in a stack (Ipad)
and can be defined by the equation:

SI � Ipad � Ilast (6)

Background subtraction methods significantly affected the
shape of melting profiles (Fig. 10). The Fotin et al. (13)
method resulted in erratic variations in the melting profiles of
all image stacks, indicating that the placement of the frame
significantly affected the fidelity of melting profile readout
(Fig. 10A). The corresponding normalized, i.e., (X � min)/
(max � min), melting profiles are shown in Fig. 10B, 10D, and
10F. Melting profiles analyzed by the Fotin et al. (13) method
yielded a much greater range in the variability of Td values (47
to 53°C) (Fig. 10B) than the other methods (51 to 52°C) (Fig.
10D and 10F), indicating that the background subtraction
method can drastically affect interpretation of melting profiles.
Although the Fotin et al. (13) method accounted for most of
the variation in SI values (Fig. 10A), a spike was clearly visible
at 25°C for melting profiles obtained using the alternative
methods (Fig. 10C and E). The source of this variation is not
known, but may be due to changes in shape of the coverslip of
the reaction chamber which altered the target fluorescence in
the gel-pads. Spikes in SI values occurred at 25°C in numerous
experiments (i.e., n � 30) (data not shown; Zack McMurry,
personal communication). The other two original raw stack
images analyzed in the same manner yielded similar results
(not shown).

Results from displacement experiments obtained using na-
tive 16S rRNA sequences from Bacteroides forsythus also
yielded similar results, although variation of initial SI values
was less than those obtained using oligonucleotide targets.
However, the range of Tds was about the same (data not
shown). Figures 10C and 10E show that initial signal intensity
values remained relatively constant when just Iinner (equation
5) or Ipad (equation 6) was used. Apparently it is the Bouter that
leads to nonuniformed signal intensity values presumably be-
cause it is most affected by the diffusion of the target out of the
gel pad and into solution. When Iinner is divided by Bouter in
Fotin’s method (equation 4), the noise of both intensities are
multiplied together increasing the noise of signal intensity val-
ues. Hence, increased variation in initial SI values for oligo-
nucleotide targets might be due to Fotin’s equation.

Data sets 1 and 2 were produced using Fotin et al. (13)

FIG. 7. Relationship between initial SI values of perfectly matched
duplexes and their corresponding binding constants (
G0

20) for solu-
tion. SI values were determined by the Fotin et al. (13) method. Mean
and standard deviation (n � 40) of SI values are shown for each
duplex. Probes in order from lowest to highest 
G0

20 are (number,
name): 63, Univ 907; 64, Eub 927; 65, Eub 338; 390, Eub 336; 74,
S-P-Grpos-1192-a-A-22; 62, Univ 1390; 75, S-P-Grpos-1199-a-A-15;
and 438, S-P-Grpos-1200-a-A-13.

FIG. 8. Distribution of initial SI values of probes having more than
two mismatches to target sequences from data set 1 by MPP type.
Initial SI values of melting profiles of all probes with more than two
mismatches are shown as shaded background (i.e., including uncertain
profiles).

FIG. 9. Color-enhanced image of a portion of a gel-pad microarray
showing the inner and outer grids framing the gel pads used by the
Fotin et al. (13) image processing software. Gel-pads, green; frames,
pink; background, blue. Panel B is a magnified image of single gel-pad
from panel A.
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method. Therefore, one can expect the background subtraction
method and placement of the window framing the gel pad to
have a substantial effect on the quality of these datasets. Un-
fortunately, we could not regenerate the datasets because the
image acquisition software (13) did not store the original im-
ages.

Interestingly, most of the RNA profiles observed with our
method (equation 6) were linear rather than sigmoid. When
melting profiles were calculated in terms of the Fotin et al. (13)
(equation 4) method, they turned out to be curved, indicating
that the method alters the form of melting profiles to approx-
imate sigmoid melting profiles in solution. To more thoroughly
examine the extreme effects of equation 4 on the shape of
melting profiles, in silico simulations were performed using two
straight lines that approximated the values of Iinner and Bouter

along the temperature course of a duplex melt. The simula-
tions produced curved melting profiles resembling sigmoid
melting profiles in solution. Moreover, increasing the slope of
Bouter (to simulate the diffusion of labeled targets into solu-
tion), substantially increased the curvature of the melt, indi-
cating that target size might have significant affects on the form
of melting profiles calculated by this method.

Effects of diffusion on melting profiles. The motion of large
RNA fragments in the gel pad and the aqueous solution is

determined by diffusion, which in turn, is governed by the size
of the molecule. The effect of target fragment size on melting
profiles was investigated to determine if diffusion was a major
determinant in the observed melting profiles since diffusion
affects Bouter in equations 4 and 5. The alternative image pro-
cessing and background subtraction method (equation 6) was
used for these experiments. Diffusion could be a major deter-
minant if various-sized targets hybridizing to identical probes
yielded different melting profiles. In this case, short synthetic
targets (i.e., 18- to 22-nucleotide oligonucleotides) should dif-
fuse more rapidly from the gel-pad into solution during the
temperature course of the experiment than native fragmented
16S rRNA (approximately 100 to 150 nucleotides). Alterna-
tively, if observed melting profiles were similar, we could con-
clude that melting profiles were independent of target frag-
ment size. To compensate for possible dye effects (due to
differences in the labeling of target oligonucleotides and native
RNA), we compared the differences in Td between perfect-
match and mismatched duplexes (Fig. 11) labeled with the
same dye.

In two replicated experiments, there was no difference in the
Tds for pairs 62 and 399, or pairs 63 and 401 when native rRNA
was used. However, there were significant differences in Tds for
pairs 62 and 399 (5°C for two experiments) and pairs 63 and
401 (10°C for two experiments) when target oligonucleotides
were used. Experiments conducted using lissamine-rhodamine
 ethylenediamine dye, rather than Cy3, yielded similar results
(Zack McMurry, personal communication), indicating that the
differences in dye used for labeling the target did not signifi-
cantly contribute to diffusion. These findings are consistent
with the notion that the shorter synthetic targets readily diffuse
into solution when they dissociate from probes in the gel pads
to solution while longer targets do not diffuse as rapidly, pre-
sumably due to their larger size and secondary structure.

It is important to recognize that initial SI values for perfect-
match and mismatched duplexes were significantly different
(data not shown). Scaling (in order to compare Tds) of the

FIG. 10. Composite melting profiles derived from the analysis of 20
displaced image stacks from a single gel-pad microarray experiment.
Placement of the original stack image was displaced in the by and y
coordinates of the frame (see text for details). Panels A, C, and E
represent stack images processed by using different background sub-
traction methods: in-out/out (equation 4) (13), the in-out (equation 5)
(52), and the in method (equation 6) (this study), respectively. Panels
B, D, and F represent the normalized melting profiles (used to calcu-
late the dissociation temperature) from panels A, C, and E, respec-
tively. Gray boxes indicate the range of Td values.

FIG. 11. Differences in melting profiles obtained using synthetic
(i.e., oligonucleotide) (panels A and C) and native rRNA target (pan-
els B and D). Images were obtained using equation 6. Panels A and B
represent probes 62 (Univ 1390, perfect match, PM) and 399 (Univ
1390-c13, single internal mismatch, MM), respectively. Panels C and D
represent probes 63 (Univ 907, PM) and 401 (Univ 907-c9, MM),
respectively.
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melting profiles, as currently practiced, masked the difference
between perfect-match and mismatch duplexes when RNA was
used as the target. Therefore, for long RNA fragments, melt-
ing may not provide additional power for discriminating per-
fect-match and mismatched duplexes.

DISCUSSION

NNs have traditionally been used to recognize patterns in
data that are impossible to substantiate by linear predictive
modeling methods (30). In particular, NNs are useful for an-
alyzing fuzzy, noisy, chaotic, and/or unpredictable nonlinear
data. For example, NNs have been used to identify the restric-
tion enzyme patterns of Escherichia coli O157:H7 (7), stable
low molecular weight rRNA banding patterns of microbial
communities (36), and to predict SI values and dissociation
temperatures of probe-target duplexes on microarrays (47),
the pyrolysis mass spectra of Mycobacterium tuberculosis com-
plex species (14), the promoter sites of E. coli (18), protein
binding sequence motifs (39), and the fatty acids of microbial
communities (37).

In this study, NNs were trained to recognize patterns in
gel-pad microarray data (e.g., the variability and shape of melt-
ing profiles) and to determine the variable (i.e., input), or
combinations of variables (i.e., inputs), contributing to ob-
served patterns in the data. The NN program, Neuroet (38)
was employed because, in contrast to available NN packages
(free and commercial), it allowed us (i) to automatically de-
termine the optimal number of hidden neurons using an iter-
ative approach, and (ii) to easily extract equations from trained
NNs in order to link together several NNs that were used to
recognize various aspects of melting profiles (e.g., Quality,
Shape, and MPP scores), and (iii) to identify the input or
combinations of inputs which are important for making pre-
dictions.

Before training the NN, the optimal architecture must be
determined (5, 30). We optimized the number of hidden neu-
rons (i.e., architecture) for training NNs and compared the
predictions of test and validation data sets to ensure that the
architecture and training conditions lead to accurate and reli-
able predictions. The automated procedure in Neuroet that
calculated the number of hidden neurons substantially sped up
(�100 times) the process of determining the optimum archi-
tecture of the NN because the user was not required to man-
ually compare the performance of different NNs (e.g.,
R-square values of observed versus predicted outputs of test
and validation data sets). Rather, the best NN model was
selected based on AICc scores, with the lowest score contain-
ing the optimum number of hidden neurons for data analyses.
Information on the predictions for testing and validation data
(Table 2) demonstrated that the final NNs were not under- or
overtrained and that the predictions were quite accurate-even
for melting profiles not used for training. Equations extracted
from these NNs were used to build the MPP calculator.

The MPP calculator consisted of equations extracted from
four trained NNs (i.e., NNs that predicted Quality 1, Quality 2,
Shape 1, and Shape 2 scores). They were linked together in the
following fashion: (i) the predicted outputs from equations
predicting the Quality scores were fed into the inputs of the
equations predicting the Shape scores of melting profiles, and

(ii) the predictions of Quality and Shape scores, as well as
other melt characteristics, were used as inputs to an equation
that predicted MPP scores. Our approach of linking together
different characteristics of melting profiles into one calculator
was successful since we were able to effectively discriminate
between ideal and poor melt profiles as demonstrated in Fig. 4
and 5. Moreover, we were able to account for most (90%) of
the variability in the data.

Just knowing that an NN accurately recognizes specific pat-
terns in complex data does not provide explanatory insight into
the contributions of input variables to the prediction process.
For this reason, we used the Measuring Importance of Inputs
procedure in the Neuroet package. This procedure yielded
consistent results when repeated numerous times (n � 5),
indicating that the approach was statistically robust and in
agreement with the rigorous testing conducted in a similar
study (38). To our knowledge, this is the first study to demon-
strate the utility of this procedure using biological data. The
finding that SI values at the beginning of the melt were impor-
tant to predict Quality and Shape scores was anticipated since
SI values are highest at the beginning of the melt and more
variable along the temperature course as target sequences dis-
sociate, and SI values approach the detection limit of the
system (Fig. 5). The finding that SI values at the beginning,
middle, and the end of the melting profile were used to predict
Quality scores suggests that, in addition to considering the
disjointedness of adjacent SI values at the beginning of the
melt, the NN also considered SI values at the maximum slope
of the melt, and at the end of the melt.

The MPP calculator provided a way to consistently classify
melting profiles based on the change of SI values with temper-
ature. Key findings obtained by analyzing the aggregated data
with the MPP calculator were that: (i) approximately 18% of
the perfect-match duplexes yielded poor melting profiles, (ii)
approximately 20% of duplexes with two or more mismatches
were classified as ideal and (iii) these results were similar for
two independent data sets. Visual evaluation of these profiles
confirmed that indeed they were classified correctly, in contrast
to our expectations. Gel-pad microarray technology was devel-
oped to serve as an analytic method that would be able to
identify specific nucleic acids in a sample. It turns out that the
method itself imposes very high complications for interpreting
its results (see Discussion about overlapping processes).
Hence, these findings identified systematic problems intrinsic
to interpretation of melting profiles and gel-pad technology.
The observation that certain mismatched duplex types pro-
duced ideal melts was anticipated (41) since these duplexes
presumably have high binding constants and their SI values
were within the dynamic range of the camera. It was for this
reason that we investigated the effects of image processing,
binding constants, and diffusion on melting profiles.

Interpretation of melting profiles. Classical DNA melting
experiments using spectrophotometric analysis have shown
that a sigmoid melting profile is precisely determined by the
temperature course of the binding constant (9, 29). The hy-
bridization process in a gel-pad microarray might be regarded
as an equilibrium process (given adequate time for hybridiza-
tion). The equilibrium process can be described by the Law of
Mass Action (15) and expressed by the following equation:
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Kp � e�

G0

RT (7)

where 
G0 is the change in the standard Gibbs free energy, R
is the universal gas constant, T is the absolute temperature, and
Kp is the binding constant of the nucleic acid strands. Accord-
ing to equation 7, the binding constant exponentially increases
as 
G° becomes more negative-therefore, strong binding of a
probe to a target (i.e., high Kp) indicates high duplex stability
(i.e., negative 
G°). Binding constants (and therefore the

G0s) are sequence-dependent (9) since duplexes formed from
different perfect-match probes yielded different initial SI val-
ues (Fig. 7). These findings are consistent with the notion that
differences in initial SI values of duplexes (determined by using
equation 4) are mainly (�83%) attributable to differences in
the binding constants. In contrast, the melting process is not an
equilibrium process because prior to the melting of duplexes,
the microarray was washed with a stringent buffer that removes
all nonhybridized material. Hence, duplexes in gel-pads are not
in equilibrium with the original single-stranded nucleic acids.

The dissolution process is determined by the rate with which
duplexes dissociate, the diffusion of the target within the pad,
and the diffusion of the target into the solution outside of the
pad. Therefore, the observed (nonequilibrium) melting profile
in a gel-pad is an overlap of the true melting of duplexes, the
diffusion of the target into solution, and the temperature-de-
pendence of the fluorescent dye used in these experiments
(33). We demonstrated the affects of target size on melting
profiles by comparing the melting profiles of short synthetic
targets (oligonucleotides) to those of native rRNA fragmented
using the currently established protocol (Materials and Meth-
ods). While this and a previous study (48) demonstrated that
duplexes formed using synthetic targets in the range of 20 to 40
nucleotides allowed the effective discrimination of perfectly
matched and mismatched duplexes (Fig. 11), fragmented na-
tive rRNA targets did not. Hence, discrimination of perfectly
matched from single mismatched duplexes (12) with rRNA
fragmented using the current protocol (producing fragments in
the range of 100 to 150 nucleotides) appears to be problematic
presumably because of reduced diffusivity (a function of size
and possibly secondary structure).

The effects of diffusion are especially relevant to our study
since the observed melting profiles were analyzed by image
acquisition software that used the Fotin et al. (13) background
subtraction method. Fotin et al. (13) originally proposed this
method, which is just a division of the local background cor-
rected SI value over its local background, because it partially
compensated for the temperature dependence of the fluores-
cence dye and variations in the intensity of the exciting light.
Moreover, this method has been widely used in numerous
studies (8, 10, 12, 20, 24, 45, 47, 48, 49). The space immediately
surrounding the gel-pad is the region most affected by the
diffusion of the dissociated target into solution, which can be
observed by the significant increase in SI values of the back-
ground (i.e., Bouter) during the temperature course of the ex-
periment (data not shown). For this reason, minor differences
(i.e., 6 to 7%) in placement of the rigid grid that frames
gel-pads relative to the background (i.e., Bouter) significantly
influence the form of melting profiles and their initial SI values
produced by this method (Fig. 10).

The existing image analysis software was not sufficiently flex-
ible to allow ideal placement of the grid to all pads on a
microarray (centering the inner window on each gel pad). For
instance, placement of the grid to pads in one region (e.g.,
corners of the microarray) was always associated with different
placement of the grid to pads in other regions of the microar-
ray (data not shown). Therefore, diffusion of the target and
placement of the grid frames were major sources of experi-
mental variation in this study (as is likely true of others) (8, 12,
24, 26, 47, 48) that affect our ability to interpret microarray
data.

Although some erratic melting profiles may be attributed to
the Fotin et al. (13) background subtraction method, uncertain
or poor melting profiles might also be due to probes with low
binding constants. For example, more than 60% of the targets
that were complementary to probe 438 (S-P-Grpos-1200-a-A-
13) were classified as having poor melting profiles, because
probe 438 has a low binding constant (
G0 � �21.8 kcal/mol.,
see Fig. 7) to complementary targets as clearly shown in Fig. 5.
Fluorescence originating from duplexes with low binding con-
stants presumably approaches the detection limit of the system.
These results also demonstrate that the concentration of frag-
mented target sequences and the binding constant of the
probes, combined with the dynamic range of the camera, can
sometimes confound our ability to detect fluorescent signals of
melting profiles.

Our working hypothesis that the general form of a melting
profile in gel-pad microarrays (within the dynamic range of the
detection system) should be sigmoid-shaped and not change
from one duplex to the next, and that observed differences are
due to experimental variations is supported because we found
ideal melting profiles for various perfect-match and mis-
matched duplexes. Therefore, melting of duplexes that have
various types and compositions have the same general form of
melting profiles. Deviations from the general form can be
attributed to experimental artifacts (e.g., Fotin’s equation, dif-
fusion of the target, SI values approaching the detection
threshold of the camera, etc.).

In accordance with equation 7, the binding constant should
exponentially decrease (and 
G0 become more positive) for
duplexes with mismatched base pairs, making the duplexes
unstable. Table 4 supports this general trend: duplexes with 2
or more mismatched base pairs yielded a lower number of
ideal melting profiles and a higher number of poor melting
profiles. Most duplexes containing mismatches were classified
as having poor melting profiles because they have low binding
constants, and consequently, were below the detection limit of
the system.

Some duplexes with mismatches (�18%) consistently
yielded ideal melt profiles (Table 4). The MPP calculator clas-
sifies melting profiles (i.e., ideal, uncertain, or poor) based on
subjective judgment about the form of melting profiles.
Smooth sigmoid shape and absence of erratic glitches were the
primary criteria for classifying a profile as ideal as shown by the
majority of melting profiles from perfect-match duplexes. This
finding indicates that the simple observation of melting profiles
was not enough to interpret gel-pad microarray data, as used in
a previous study (12). Indeed, some duplexes with multiple
mismatches behaved the same way as perfect-match duplexes:
reasonable Td and ideal shape. Hence, a melting profile, by
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itself, does not provide useful information for distinguishing
between specific and nonspecific hybridizations. These results
are very problematic for the application of gel-pad microarray
technology to environmental samples of unknown composition
(both sequence- and concentration-wise). Perhaps develop-
ment of a robust physical model that considers the effects of
diffusion, dissociation kinetics, thermodynamics of hybridiza-
tion, sequence dependencies, target concentration, and rate of
temperature increase would drastically improve the situation.

In summary, the NN approach outlined in this study was
especially useful for examining data affected by overlapping
factors (e.g., placement of the grid frames, background sub-
traction method) which were not obvious at the beginning of
the study. The analysis of 1,293 perfect-match duplexes by the
MPP calculator revealed that �18% were correctly classified
as having poor melting profiles. Visual examination of all of
these profiles showed that they indeed looked poor having a
linear shape and very low SI values. Presumably, this result was
due to image processing artifacts (see above) and/or low bind-
ing constants of the probes, despite the fact that they were
perfect-match duplexes.

Towards developing a diagnostic tool for microbial identi-
fication. To address the problems associated with the image
acquisition and processing, we have developed a new image
analysis system that captures the images of all gel pads on a
microarray as they change with temperature. The images are
stored as image stacks. Image processing software has also
been developed that allows users: (i) to place grid frames, (ii)
to convert image stacks to SI values, and (iii) to implement a
variety of background subtraction methods including those in
equations 4, 5, and 6. We have used this software to analyze
melting profiles as shown in Fig. 10 and 11. Unfortunately, data
sets 1 and 2 could not be reanalyzed because the original image
analysis software did not save images. Our new image acqui-
sition and processing system does save images.

Although single-base-pair discrimination is possible with
gel-pad microarrays using oligonucleotide targets, this level of
resolution might not be generally possible with native rRNA
unless the target rRNA is fragmented to a very short length,
similar to that of oligonucleotides used in this and other stud-
ies (47, 48). As shown in Fig. 11, we were not able to clearly
distinguish between perfect-match and mismatched duplexes
with a small study set of probes examined with the current
fragmentation protocol, which produces fragments of 100 to
150 nucleotides in length, and the modified image analysis
software. Also, the secondary structure of RNA may play a
critical role in discrimination. Although fragmenting rRNA to
shorter lengths might help resolve single nucleotide mis-
matches, one has to be aware that extensive fragmentation by
any currently existing hydrolytic method using metal ions or
Brønsted acids and bases induces bias towards the fragments
involved in secondary structure (helices) (32). This bias will
affect quantification of microorganisms from environmental
samples since some of the informative single stranded portion
of rRNA will be destroyed by hydrolysis.

Application of the MPP calculator and subsequent experi-
ments revealed that the main variables affecting the form of
melting profiles using the current gel-pad microarray are: the
placement of the grid frames and the background subtraction
method which are both used by the image analysis system, and

duplexes with low binding constants. A key variable affecting
the use of dissociation analysis to improve mismatch discrim-
ination, relative to more conventional use of an average hy-
bridization stringency, was shown to be dependent on target
molecule size. Although single mismatch discrimination has
been demonstrated for certain probes using oligonucleotide
targets with the existing technology, an assessment of the more
general utility of the gel-pad format for dissociation analysis
will require reevaluation of both the image processing and
fragmentation/labeling protocols.
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