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Abstract
The reliable interpretation of Affymetrix GeneChip data is a multi-faceted problem.The interplay between biophys-
ics, bioinformatics and mining of GeneChip surveys is leading to new insights into how best to analyse the data.
Many of the molecular processes occurring on the surfaces of GeneChips result from the high surface density of
probes. Interactions between neighbouring adjacent probes affect their rate and strength of hybridization to
targets. Competing targets may hybridize to the same probe, and targets may partially bind to more than one
probe.The formation of these partial hybrids results in a number of probes not reaching thermodynamic equilibrium
during hybridization. Moreover, some targets fold up, or cross-hybridize to other targets. Furthermore, probes may
fold and can undergo chemical saturation. There are also sequence-dependent differences in the rates of target
desorption during the washing stage. Improvements in the mappings between probe sequence and biological data-
bases are leading to more accurate gene expression profiles. Moreover, algorithms that combine the intensities of
multiple probes into single measures of expression are increasingly dependent upon models of the hybridization
processes occurring on GeneChips. The large repositories of GeneChip data can be searched for systematic effects
across many experiments. This data mining has led to the discovery of a family of thousands of probes, which show
correlated expression across thousands of GeneChip experiments. These probes contain runs of guanines, suggest-
ing that G-quadruplexes are able to form on GeneChips.We discuss the impact of these structures on the inter-
pretation of data from GeneChip experiments.
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INTRODUCTION
One of the most popular forms of microarray is

the Affymetrix GeneChip. However, analysing the

millions of data points simultaneously provided by

each GeneChip is not straightforward. We provide

an overview of recent insights into the biophysics

and bioinformatics of GeneChip technology. We

begin by briefly reviewing the Affymetrix GeneChip

and move on to discussing the physics of the

technology, describing the various types of molecular

interactions which potentially occur on GeneChips.

We focus on the evidence for probe–probe interac-

tions and the effects of competitive hybridization

between targets binding to several probes and probes

binding to several targets. We then discuss the

bioinformatics associated with GeneChips, particu-

larly the annotation of probes and the algorithms

that have been developed to collate the results from
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multiple probes in a probeset into a single measure

of gene activity. These algorithms usually assume

that a probe affinity is constant from experiment

to experiment. We continue by describing our

discovery of a family of thousands of probes that

show correlated expression across GeneChip datasets.

We conclude by discussing how the existence of this

family raises questions about several of the basic

assumptions behind GeneChip analysis, such as the

size of overlap in sequence expected to result in

cross-hybridization, and whether the affinity of these

probe sequences are always the same.

AFFYMETRIXTECHNOLOGY
An Affymetrix GeneChip consists of a high-density

array of in situ synthesized oligonucleotides [1].

Transcripts for each gene are detected through

probes of 25 bases. Each gene is measured by 11

or more perfect match (PM) sequences of 25 bases.

Each PM also has an associated mis-match (MM)

probe that is identical to the PM except for the

central base (position 13) being set to the comple-

mentary base of the PM.

Each probe is covalently attached to a siloxane

layer through a linker, with Affymetrix originally

choosing a hexaethylene glycol linker [2]. The probe

is grown via the process of photolithography in

which light-directed oligonucleotide synthesis

selectively removes terminal protecting groups in

predefined locations by exposure to light through

masks. The photochemistry used by Affymetrix

results in the 30 end of the probe being tethered

to the surface and the 50 end free [3]. The growth

of each probe occurs in a series of steps with

measurements by Affymetrix [2] showing the

stepwise synthesis efficiency increasing over the

first approximately six steps, quickly progressing

to �92–95%. The synthesis of probes is curtailed

at 25 bases and so �20% of all the probes

(0.9225
¼ 0.13; 0.9525

¼ 0.28) will reach this length.

The density of initiation sites is high, �5� 1017 m�2

[4], resulting in full-length probes being only �3 nm

apart. The full extension of a phosphate backbone is

0.7 nm/base repeat [5] so a full-length 25-mer probe,

including a flexible linker attached to the surface,

may be �20 nm in length. It follows that probes can

readily come into contact with each other since

they are much longer than their separation distances.

In the standard Affymetrix protocol, following

synthesis of cRNA, the product is fragmented into

short lengths. Affymetrix [1] suggest the length of

fragments lie between 30 and 400 bases, whereas [6]

suggest between 50 and 200. Thus, the target RNA

is considerably longer than the probes to which it

sticks. Figure 1 shows the idealized hybridization

between the probe 209649_at_pm5 and an example

fragment from its target transcript.

The fragmented RNA is hybridized to the

GeneChip for 16 h, after which the array undergoes

a series of washing steps. In the standard protocol,

Figure 1: The ideal hybridization between the probe
209649__at__pm5 and its target.
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there are two post-hybridization wash steps [7]: a

low-stringency wash, followed by a high-stringency

wash in which the salt concentration of the buffer

is decreased and the temperature is increased. There

then follows staining with streptavidin phyco-

erythrin, washing in a non-stringent buffer, staining

with anti-SAPE antibody and washing again in non-

stringent buffer before scanning. Several wash cycles

are used in order to increase the chances of washing

away non-specific duplexes.

THE BIOPHYSICS OF GENECHIPS
Affymetrix have released several ‘spike-in’ experi-

ments in order to help analysts develop a better

understanding of GeneChip technology. These

calibration experiments consist of GeneChips being

treated with mRNA at carefully controlled concen-

trations, e.g. a Latin-Square experiment, which uses

42 HGU-133A GeneChips with triplicate measure-

ments of 14 different concentrations for 42 different

transcripts. The analysis of such experiments show

that the number of targets attached to oligonucleo-

tide microarrays results from the interplay between

a number of processes. These include the strength of

hybridization, which in turn is affected by the density

of probes, the competitive hybridization between

multiple targets, the folding of probes and targets,

saturation resulting from a lack of probes or target

available to hybridize, and which duplexes avoid

desorption. The analysis of hybridization to

GeneChips, and how to interpret the observed

signals in terms of biophysical processes and target

concentrations, is a multi-faceted problem [8].

The interplay between the surface
density of probes and probe^target
and probe-probe interactions
The kinetics of duplex formation in solution is well

understood, with the rate-limiting step being the

formation of a nucleus containing a few base pairs

[9]. Once formed, the nucleus grows by adding base

pairs faster than they are dissociated, and the strands

‘zip-up’. The size of the nucleus is estimated to

be �5 bp for oligomers containing only AT/U pairs

and �2 bp for oligomers containing at least two

GC pairs [9]. Nearest-neighbour models provide

a close approximation for the sequence dependence

of duplex stability in solution [10]. In particular,

the Independent Nearest-Neighbour Hydrogen

Bonding model makes the assumption that the

stability of a base pair depends upon its adjacent

base pairs. The nearest-neighbours 50AT30/30TA50,

50TA30/30AT50 and 50AA30/30TT50 are considered

different because the combinations have different

stacking energies, resulting from van der Waals’

interactions and hydrogen bonds between the

base-pair stacks. The stability of a helix then depends

upon the base composition of the helix forming

the nearest-neighbour interactions as well as the

terminal base pairs. Also, cations in solution, such

as sodium and magnesium ions, act to reduce

the repulsive Coulombic interactions between the

negatively charged backbone phosphates and help

to determine the stability and folding kinetics of

nucleic acids in solution [11].

There are considerable differences between the

rates and efficiencies of hybridization in solution

compared to that on a microarray [12], with surface

hybridization rates 20–40 times slower than solution-

phase rates for identical sequences and conditions

[13]. The surface probe density of microarrays plays

a central role in regulating the hybridization of

targets to probes [14]. In low-probe density regimes

essentially 100% of probes can be hybridized with

relatively quick kinetics whereas at higher densities

efficiencies drop and the kinetics of hybridization are

also slower [14]. It is evident that not all probes are

able to hybridize to targets on high-density oligo-

nucleotide arrays, as Affymetrix [15] report saturating

adsorption densities of target RNA to be less than

10% of the probe surface density.

Microarrays carry a high-charge density, due to

the phosphate backbones of the nucleic acids, and

this acts to decrease the stability of duplexes [16].

This interpretation is supported by the significant

differences observed in the thermodynamics of

duplex hybridization for solution and surfaces, with

a suppression and broadening of the duplex melting

curve observed for surface hybridization [15]. There

is also the presence of steric crowding at high-probe

density [17]. Furthermore, when the surface probe

density becomes high enough, a polyelectrolyte

brush results from the mutual crowding of the

nucleic-acid tails of transcripts hybridized to probes

[18]. This brush acts to lower the hybridization

efficiency for the largest probe densities. Another

explanation for why the observed energy of duplex

formation is observed to be smaller on microarrays

than in solution is that only a limited fraction of

duplexes become fully zipped during hybridization

on GeneChips [7].
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Crowded conditions on the array surface enable

probes to come into contact [6]. A model of the

hybridization dynamics of surface-attached DNA

oligomers [19] shows that, as probe molecules

interact more strongly, fewer nucleation sites

become accessible, and binding rates are diminished

relative to those in solution. The effective association

rate for hybridization is measured to decrease with

probe density, �, and the models indicate a scaling

of ��1.8 [19]. This means that duplexes will be more

stable as the probe density drops and will become

less stable as the probe density increases. The number

of bound hybrids is of direct relevance to the

interpretation of microarray data because it is this

value that is responsible for the light detected for

each cell. A model of the number of hybrids

expected for different probe densities [16] shows a

sharp rise in the number occurring within a narrow

range of probe densities. According to the model,

the narrow range occurs because at low probe

densities there are a limited number of probes

available, and at high-probe densities the majority

of probes cannot hybridize because of the electro-

static repulsion [16]. These models of hybridiza-

tion dynamics [16, 19] indicate that regions on

GeneChips which have reduced densities of probes

will result in more hybrids, and these hybrids will

be more strongly bound. In contrast, regions of

excess probe-density will result in lower numbers

of hybrids and they are more likely to be weakly

bound. Subtle changes in local probe density will

be likely to result in changes in the light reported

from the cells containing the probes.

Preheating a microarray surface has a positive

effect on hybridization efficiency [14, 17]. We

expect that this is due to the preheating dissociating

many probe–probe interactions, freeing up probes

to bind to target. Probe–probe associations may

involve only a few residues but these may still be

able to compete with the formation of probe–target

duplexes [15]. Hydrogen bonding and stacking

of bases from two fixed strands is likely to incur a

small loss of conformational entropy, there will be

a smaller entropy loss from counterion release, and

probe–probe interactions do not incur the RT

ln(target) terms that apply to probe–target equilib-

rium [15]. The formation of probe–probe duplexes

has been modelled in 1D, but the two-dimensional

monomer–dimer model is not tractable, and no

solutions exist to establish whether groups of probes

will undergo phase transitions in their population of

duplexes and higher-order interactions [6]. All-atom

molecular-dynamics simulations of DNA tethered to

a surface [20] show a stable tilt in the direction of

DNA, suggestive of DNA entering a colloid state

[21]. A possible transition to the colloid state in the

simulations is induced by surface-induced solvent

activity changes, particularly salt-induced DNA–

DNA attractions [20]. We are not aware of simula-

tions for single-stranded DNA, but we suggest that

they will show related effects to those seen by [20],

in particular, the formation of probe–probe inter-

actions, possibly resulting in phase transitions.

Hybridization is usually considered in terms of

Watson–Crick base pairing. However, biomolecular

crystal structures contain examples of different

types of base interactions [22]. Purines and pyrimi-

dines provide three edges for hydrogen-bonding

interactions: the Watson–Crick edge; the Hoogsteen

edge for purines and the C–H edge for pyrimidines;

the Sugar edge. A given edge for one base can

interact, in principle, with any of the three edges

of another base. Moreover, in RNA structures, there

is evidence for base–base interactions involving

the cis or trans orientation of the glycosyl bonds,

i.e. the ribose sugars are on the same sides, or

opposites sides, of a line joining the interacting edges.

This gives a total of 12 alternative base-pairing

geometries.

The existence of these non-Watson–Crick pair-

ings opens up the possibility that higher-order

interactions between probes may also be prevalent on

GeneChips. Of particular interest is the Hoogsteen

hydrogen-bonded guanine (G)-tetrad, a planar

motif, which has been observed in telomeres [23].

G-quadruplexes result from the hydrophobic stack-

ing of several tetrads and are thermally stable (Tm

typically >90�C) [24], with RNA quadruplexes

being more stable than their DNA counterparts

[25]. Each tetrad is held together by eight hydrogen

bonds while a central cation forms cation–dipole

interactions with eight guanines, thereby reducing

the repulsion of the central oxygen atoms [25].

GeneChip probes containing multiple guanines in

a row have abnormal binding behaviour compared

with other probes and do not covary with other

probes that interrogate the same gene [26]. It has

been argued that because probes are immobilized

on GeneChips, it is not possible for them to form

quadruplexes amongst themselves [26]. By contrast,

we would suggest that since probes are immobilized,

in close-proximity, and running in parallel, this
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provides an ideal opportunity for four probes

containing a run of contiguous guanines to associate

and form a stable quadruplex (Figure 2). We note

that it must be the probes with long runs of Gs that

are abnormal, not the target RNA (which will

contain a complementary run of Cs). The possibility

of a G-quadruplex forming on the surface of

GeneChips has also been suggested by [27].

Competitive hybridization
There is evidence that the multiplicity of non-

specific targets binding partially to probes interferes

with the formation of specific-target duplexes. A

study by Affymetrix [15] of the effects of probe

lengths on hybridization on high-density oligonu-

cleotide arrays reports that the signal for a short

probe (10-, 12-, 14-, 16- and 18-mer) exceeds

the equilibrium signal for a 20-mer probe at 25�C.

Similarly, [4] also report that a different 20-mer

probe showed smaller absorbed target density than

did an 18-mer and 16-mer at 22�C. This is contrary

to the expectation that longer probes should produce

more stable hybrids than shorter probes and

suggests that the probes may be folding or interacting

with each other at �22–25�C [Shingo Suzuki,

private communication]. Indeed, another study

of hybridization onto oligonucleotide probes with

variable lengths [28], at higher temperatures (45�C),

shows intensities increasing with longer probe

lengths. Furthermore, Glazer and colleagues’ own

measurements [4] show that the discrepancy between

the 18-mers and 20-mers is reduced considerably

at 45�C.

The absorbed target density decreases with

temperature and changes over time, in the experi-

ments of [15]. Furthermore, the melting curves

for target concentrations above 100 nM have dips

and step-structures [15]. These experiments suggest

that structural reorganization is likely occurring at

the array surface and that many probes may be

involved in probe–probe interactions [15]. Glazer

et al. [4] also find an ‘overshoot’ in absorbed target at

high concentrations, with a large amount of target

binding rapidly before desorbing to a final plateau.

This effect was associated with the high surface

density of probes, and the fact that probe–target

hybrids can nucleate in many places, but can only

fully hybridize when there is a run of complemen-

tarity outside the nucleation site [4]. The results

of the experiments of [4] and [15] suggest that

some targets form bridging interactions linking

two probes together (Figure 3a). As hybridization

approaches equilibrium most of the partially bound

targets become displaced, because one of the

complementary targets is able to hybridize to most

of the probe [4].

A model of partially bound targets has also been

suggested by [7], who see a pronounced wash effect

on the intensities. Probes that have a large intensity,

immediately prior to washing, see little fall off during

the wash cycle, whereas probes with low intensity

have a much larger post-wash reduction [7]. These

results suggest that, in the earliest stages of

hybridization, many probes hybridize partially to

non-specific targets and these partial hybrids are

stable enough to obstruct other hybridization sites

[7]. Over time, non-specific targets are replaced

Figure 2: Four adjacent probes, each containing a run
of contiguous guanines, may associate and result in
a G-quadruplex. (a) The four probes in profile.
(b) Looking down on the bonds between the four
probes. Note that the guanines within the quadruplex
all face in and so cannot bind to the target.
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by specific targets, with the rate of replacement

dependent upon the probe sequence. Support for

this interpretation comes from experiments studying

hybridization of multiple targets to the same probe

[29]. When several targets are able to bind to the

same probe, a high concentration, low-affinity,

species dominates the earliest stages of hybridization.

A low concentration high-affinity species then acts

to displace the initial hybrid during a second

competitive phase [29].

The time-scales of replacement may be much

longer than the duration of the hybridization stage

of GeneChips and so equilibrium may not be

reached for some probes [7]. This is to be expected

as models of multiplex hybridization [30, 31] indicate

that the presence of multiple species extends the

time to reach equilibrium. Moreover, increasing the

hybridization stage from 16 to 40 h results in the

lowest-intensity probes experiencing less of a reduc-

tion in their intensities following the washing stages

[7]. These results are in good agreement with the

non-equilibrium interpretation of hybridization,

because theoretical models show that the time to

equilibrium increases as the relative concentrations

of the specific target drops [31, 32].

It has been suggested that only the probe–targets,

which are fully bound are able to survive a stringent

wash [7]. However, an alignment overlap between

probes and targets of 10–16 nt is sufficient to result

in correlations between spiked-in transcripts and

cross-hybridizing probes [33], demonstrating that

partial hybrids exist, and are able to remain bound

through the washing stages. Furthermore, as we

discuss later, we have recently discovered large

correlations between probes whose sequences only

have a relatively small runs of guanines in common

[34]. We suggest that all of these probes are able

to nucleate cross-hybridizing transcripts efficiently.

The small sequence of overlap in these transcripts

must enable the hybridization of these transcripts

to survive the washing stage. Moreover, models

of the effects of partial zippering between probes

and targets suggest that partial binding is prevalent

following the wash-cycle [35].

The biophysics of competitive hybridization

between several targets that are able to nucleate

and partially hybridize to one or more probes

underpins the interpretations of [4] and [7]. A

model of oligonucleotide replacement [36] has

found the activation energy for the displacement

pathway to be about one-third that for the

dissociative pathway for oligonucleotides in free

solution. It has been assumed that the relative

energies for these two pathways will be the same

on microarrays as in solution [4]. However, the

simulations of [4] show that changes to either the

dissociation coefficient of the secondary target or to

the replacement coefficient, have the same effect on

the time course of the adsorbed target density. These

results indicate that the ratio of the relative energies

of displacement and dissociation on microarrays

Figure 3: The ratio of probe:target may deviate from
1:1. (a) A target piece of RNA may hybridize to more
than one target. (b) More than one piece of RNA may
hybridize to the same target.
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is not tightly constrained, suggesting that the rate of

replacement may be very sensitive to slight differ-

ences in the array synthesis and/or hybridization

conditions [4]. Moreover, under physiological con-

ditions, the kinetics of the exchange process

for oligonucleotides shorter than 12 nt is dominated

by dissociation of the duplex. The replacement of

one duplex by another duplex drives the kinetics for

sequences longer than 12 nt [36]. Because GeneChip

probes are only 25 bases in length at most, it is

impossible that any probe will be bound by two

different targets which are both hybridized by more

than 12 nt. At first glance, it is therefore probable

that the dissociative pathway regulates the interac-

tions between targets and probes on GeneChips.

We cannot be sure, however, as the dominant

hybridization biophysics may be different between

physiological conditions and that expected on a

chip. We note that, if the kinetics of replacement on

GeneChips dominates the removal of duplexes for

sequences shorter than 12 nt, the rate of replace-

ment is likely to be dependent on the sequence

composition. We expect that this will result in the

existence of hot-spot motif sequences that form

partial hybrids that then cannot be displaced by

other partial hybrids. The existence of such hot-

spot motifs will then regulate the population of

partially bound targets at the end of the hybridization

stage.

A further issue affecting the rates of nucleation

along each probe results from the asymmetry of

a microarray, with one end of each probe attached

to the surface and the other end free. Experiments

indicate that the position along the probe, as well

as changes in probe density, act to modify the

efficiency of nucleation and hybridization [17]. A

study of the hybridization of an 18-mer target to

a 25-mer probe compared hybridization to the 18

bases at the tethered end with hybridization to the

18 bases at the free end [17]. At sparse probe

coverage densities of 1.5� 1016 m�2 the targets

hybridize at the same rate, whereas at a higher

probe coverage density of 3� 1016 m�2, the 18-mer

binding at the free end of the probe hybridizes

several times faster than the target binding to the

surface end of the probe [17]. Theoretical models of

hybridization dynamics [19] are in reasonable agree-

ment with the findings of [17] and indicate that

nucleation sites near the grafted ends of the probes

are least accessible. Moreover, there is a sharp

dielectric discontinuity at a GeneChip surface, with

the dielectric constant in the siloxane layer being

�10, much lower than in the aqueous environment

from where the target absorbs [15]. The energetics

of duplex formation depend strongly on the

dielectric constant and ionic strength of the immedi-

ate environment, and so there is expected to be a

difference in hybridization between different ends

of the probes [15].

Target^target interactions, target
folding and probe folding
Suzuki et al. [28] hybridized target oligonucleotides

in both the presence and absence of a complex

background of cDNA produced from E. coli total

RNA. As the spiked-in target concentration was

raised, the signals with the background were smaller

than without the background. This suggests that the

background increases the amount of target–target

interactions in solution and this acts to reduce the

density of targets able to hybridize to probes [28].

This results in some probes showing saturated

behaviour, not because there are no probes available

to hybridize but because there are no targets available

to hybridize. Several groups have modelled the

competitive bulk-hybridization between targets in

solution [8, 37–39], and show that this leads to

improvements to the fits to spiked-in data.

Probe and target secondary structure affect

hybridization kinetics [13]. The Vienna package

[40] and mfold [41] can be used to calculate the self-

folding energies of nucleic acids, which will depend

upon the sequence composition of the fragments.

Secondary structure in the targets expressed from

Brucella suis 1330 are likely pervasive [42], with a

significant fraction of target found in double-

stranded conformations at high temperature.

Moreover, an analysis of GeneChips predicted that

target folding may affect the signal from �10% of

GeneChip probes [43]. Furthermore, in several cases

it has been verified that probes, which are expected

to hybridize to targets that are expected to form

stable folds do indeed have a low-intensity signal

[43]. However, because the target fragments come in

a range of sizes, there is likely a population of RNA

target folds interacting with each probe [42]. Fifty

nucleotides have been chosen as a representative

size of the population of transcripts hybridizing to

the chip [44], whereas [43] postulated that the most

efficient hybridization will occur for the smallest

fragments. Hybridization of duplexes occurs through

a nucleation event followed by zippering and so [44]
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looked for runs of four or five contiguous unpaired

bases, which could result in the formation of a

nucleus. It was concluded that folding may not be

a critical factor in explaining hybridization intensities,

but [44] acknowledged that their treatment was

simplistic with respect to a full analysis, which

requires a study of how partially folded targets

hybridize. Moreover, the analysis of [44] ignores

the problem of getting the RNA hairpin to the

surface. Furthermore, an RNA–RNA interaction is

stronger than a RNA–DNA interaction [43], and

so it may become energetically unfavourable for

the unzippering of RNA to occur so as to enable the

zippering of the DNA-RNA duplex, contrary to the

model of [44].

Probes are dynamic and may undergo folding if

they contain regions that are self-complementary.

It is difficult to model this accurately on GeneChips,

because probes are tethered, and also in close prox-

imity to other probes. This results in steric hind-

rances and external forces that are usually missing

from algorithms to calculate minimum free-energies.

In spite of these complications, inclusion of energy

terms to simulate probe folding leads to better fits

to spike-in experiments [39]. However, an attempt

to include RNA folding [45] into the background

calculation of a model of hybridization [46] resulted

in only a slight (�3%) change to the predicted

intensities.

Probes chemically saturate and
undergo differential desorption in
the washing stage
GeneChips can undergo chemical saturation [47].

Early models [48] of GeneChip saturation used

the classic thermal equilibrium Langmuir adsorbtion

isotherm [49], in which there is assumed to be a

single-binding energy regulating hybridization.

However, [4] reports that the hybridization iso-

therms can be fit better using a Sips model [50],

a generalization of the Langmuir model that allows

multiple-binding energies during adsorption. The

Sips model makes more physical sense as GeneChips

contain a range of interactions involving targets

and probes. Peterson et al. [17] also find that binding

isotherms for mismatched targets can only be fit by

assuming a Sips model, whereas [6], in contrast,

argue that their fits to experimental data provide little

evidence in favour of the complex Sips model over

the simple Langmuir model. Moreover, as men-

tioned previously, the effects of bulk hybridization

[8, 37–39] also provide isotherms in good agreement

with the spike-in data.

According to the theory of Langmuir adsorption

isotherms, probes within a GeneChip should saturate

at the same intensity level. However, several

groups have noted that saturation at the same

concentration does not happen in practice, e.g. [7],

and the asymptotic signature at high concentrations is

sometimes lower for a mismatch feature than for

the PM partner [6]. The difference in saturation

intensity is not surprising if sequences have differing

numbers of fluorescent markers, but the discrepan-

cies go beyond this. Models [6, 44] suggest that

the desorption of targets during the washing stage

explains the differences in saturating intensities.

Experimental support for this interpretation has

come from [7], who explored the effects of the

stringent wash, target concentration and hybridiza-

tion time on the final microarray signal. A further

complication to interpreting the results after washing

has been identified by [51], who report several

examples in which specific target duplexes dissociate

faster than some non-specific duplexes, with tem-

perature and duplex sequence affecting the relative

dissociation rates of PM and MM duplexes.

ANOVERVIEWOF
BIOINFORMATICSTECHNIQUES
APPLIEDTOGENECHIPS
The annotation of probes
The name of each GeneChip is associated with the

relevant build of UniGene [52] used for probe

selection, e.g. the Human GeneChip HG-U133A

is based on build 133 of UniGene. The Affymetrix

probe design uses sequences from databases such

as UniGene, which are then clustered into groups,

which represent distinctive transcripts. Either a

consensus sequence, assembled from all the

member sequences from a cluster, or an exemplar

sequence of one of the members is then used as

the source from which probes are chosen. The

‘target’ sequence is contained within the exemplar/

consensus sequence and runs from the first base

of the most 50 probe and ends with the last base of

the most 30 probe.

The Affymetrix protocol [53] uses an oligo(dT)

primer, complementary to a poly-Adenylation tail,

for reverse transcription. At each step during reverse

transcription, the process may stop and produce

no more transcript, which means that the 30 end
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occurs most often in the resulting population of

target sequences. Probes are therefore chosen to be

towards the 30 end of the sequence. They are usually

selected to be no more than 600 bases upstream of

a poly-Adenylation site.

The mapping from probes into biology is crucial.

A Chip Definition File (CDF) contains information

about which probes should be associated together

into biologically meaningful probe sets. A significant

factor in microarray analysis is the procedure by

which the multiple probe values within a probeset

are condensed together into an expression measure

[54]. Affymetrix annotate their GeneChips by

aligning the probes to databases of genomic and

transcript sequences [55]. Affymetrix claim that over

70% of the probesets on the latest Human and

Mouse GeneChips have at least 9 of the 11 probes

in a probe set matching perfectly to a transcript. This

leaves many probes that do not align to the

transcripts for which they were designed. The need

to identify and remove such spurious probes has led

to considerable effort by the community to generate

alternative CDFs, e.g. [56]. Moreover, many of the

databases contain information which changes over

time and probeset definitions should change so as

to follow the most reliable knowledge [55, 56]. The

updated probeset definitions provide better precision

and accuracy compared to the original Affymetrix

definitions [57].

Probes that map to different exons may show

differential regulation, due to alternative splicing

[58], and therefore should not be treated as mea-

suring a single transcript. Mapping probes to

transcripts, instead of genes, minimizes the effects

of having multiple transcripts per gene [59].

Furthermore, mappings of probes to exon/intron

structure provide a clearer view of what each

probeset is measuring [60].

A further complication to the interpretation of

GeneChip data is the potential of hybridization

between a probe and transcripts from several genes.

Indeed, there are many probes that map to multiple

transcripts containing the full 25 contiguous bases

[61]. Both [61] and [62] have argued that this

multiple targeting results in correlations between the

expression values for each of the separate probesets,

even though there may be little biological signifi-

cance in the correlation. However, [63] disagreed,

suggesting instead that many of the large-scale

correlations seen in microarray data are due to

biological causes.

A number of probes have intensities that are

correlated with the concentrations of the spiked-in

transcripts in the Affymetrix Latin-Square experi-

ment [33]. The correlation is likely due to those

probes cross-hybridizing with one of the spiked-in

transcripts, with small overlaps in sequences corre-

sponding to runs of 10–16 nt responsible for the

cross-hybridization [33]. Unfortunately, because

there are only a small number of spiked-in

transcripts, it is only possible to use the Latin-

Square experiment to explore a relative limited

amount of this type of cross-hybridization.

Models and algorithms used to derive
expression measures
The development of algorithms to calibrate

GeneChip data is an active field. A full calibration

includes normalization, correcting for a fluorescent

background, correcting for a background from non-

specific binding and condensing the multiple probe

intensities into an expression measure, a single

measure of gene activity. The biggest differences

in the sets of genes reported to be differentially

expressed results from how the expression measure is

calculated [54]. A number of algorithms that

calculate expression measures have been bench-

marked through the use of a web tool [64, 65],

based around analysing the Affymetrix Spike-In

Latin-Square data. The benchmarking shows that

removing the signal from non-specific binding has

the largest impact on performance [65].

All Affymetrix chips of a given design are created

almost equal, and so the intensities across several

experiments can be modelled by assuming that

they result from both how sticky a probe is, and

how much transcript was dropped onto the chip in

each experiment. A collection of chips can be used

together to estimate the probe affinities, and popular

algorithms using this approach include dChip [66]

and RMA [67]. The RMA algorithm assumes that

all the PM signal is related to expression of the genes

and thus ignores the effects of non-specific binding.

However, each probe detects not only transcripts

for which it is designed, but also RNA with similar

sequences to these transcripts. Additionally, the

general ‘stickiness’ of a probe results in it hybridizing

non-specifically to the genomic background.

Correspondingly, there is a non-linear response

between RNA concentration and the fluorescent

signature [47], with a background apparent at

the lowest concentrations and saturation occurring
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at the highest concentrations. In both the low-

concentration and the high-concentration regimes,

fold-changes in the raw light intensity (measured)

do not transform into fold-changes in RNA con-

centration (of interest).

The original goal of the mismatch probe was to

measure background. Some of the earliest releases

of the Affymetrix Microarray Analysis Suite software

(versions 4 and below) calculated an expression

measure using an ‘Average Difference’, taking the

mean of the PM–MM values for a given probeset.

However, this was shown to be a poor measure

of expression level [66] and so the average differ-

ence approach was modified in MAS5 [68]. The

replacement, called Signal, calculates the Tukey

bi-weighted mean of the logs of PM-MM.

However, around 30% of probe pairs have MM

greater than PM [69], which means that logs

cannot be taken. For these cases, Signal defines an

adjusted value for the MM so as to ensure that the

log is calculated for a positive value.

Given the prevalence of MM values that exceed

their PM counterparts, many authors [67, 70–72]

regard the MM value as being an unreliable measure

of the background. One reason is that the MM

probe is likely to pick up a shadow of the gene-

specific signal being detected by PM. The size of the

central base is also a significant factor in determining

the relative strengths of the PM and MM signal [46].

If the central base in the PM is a purine (G or A),

then the corresponding position in the mismatch

is a pyrimidine (C or T), and the position in the

target RNA will also be a pyrimidine. Pyrimidines

are relatively small and so there is little steric

hindrance stopping hybridization between the mis-

match probe and the target RNA. By contrast, if

the central base in the PM is a pyrimidine, then the

corresponding position in the mismatch and target

will be a purine. As purines are relatively large, this

means that there is considerable steric hindrance

stopping hybridization between the mismatch probe

and the target RNA. If the central base of the PM

is a purine, then the ratio of PM/MM is smaller

than if the central base of the PM is a pyrimidine.

The need to correct the background contribution

to a probe’s signal has led to alternative methods,

which aim to model the effects of specific and non-

specific hybridization based on probe sequences

in conjunction with models of hybridization bio-

physics. The positional-dependent-nearest-neigh-

bour model of hybridization [69] is based on the

nearest-neighbour philosophy, but due to the effects

of surface hybridization a different weight is assigned

to each nucleotide position: a position close to the

surface may have different properties to a position

away from the surface. The signal for each probe

was modelled as arising from a combination of gene-

specific binding, non-specific binding of RNA

fragments and a uniform fluorescent background

signal. The model required fitting parameters for

stacking energies for 16 sequence pairs (since, for

example, the GC and CG sequences have different

stacking energies), 24 positional weight parameters,

parameters for the number of RNA molecules for

each gene, the number of molecules of RNA

contributing to the non-specific binding and the

background signal. However, since there are �105

probes on the array, there is little danger of

overfitting [69]. A model of hybridization biophysics

used for probe design by Affymetrix [73] does not

use the nearest-neighbour approach, but instead fits

a model in which the base type and position are

central to binding stability. Their model also covers

the unfavourable interactions of consecutive hairpins,

non-consecutive hairpins and G-quartets associated

with G-quadruplexes. The signal for each probe is

modelled assuming that it results from a mixture

of target-probe duplexes and a non-specific back-

ground, similar in form to that of [69]. Naef and

Magnasco [46] developed a similar model to [69],

neglecting nearest-neighbour effects and assuming

that the affinity depends upon the base type and

position along the probe. Yeast control RNA has

been hybridized to a Human array by [74], enabling

them to measure the non-specific background

directly and to develop their algorithm GCRMA

around a statistical model of this background

measurement. GCRMA uses sequence information

to describe the non-specific binding variation,

favouring a model similar to that suggested by [46],

which ignores nearest-neighbour information, over

the nearest-neighbour model advocated by [69].

The model fits of [46, 69, 73, 74] all show that

the affinity of a cytosine at a designated position in

a probe is greater than having a guanine at this

position, and a thymine is more sticky than an

adenine. It was initially suggested that the asymmetry

is related to the labelling of biotin to pyrimidines

during the preparation of GeneChips, with the

biotin label then interfering with the hybridization

process [46]. However, it has been argued [75] that

the asymmetry results from RNA being hybridized
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to DNA on GeneChips, and thus it is not surprising

that an A–U binding is different to a T–A binding.

Similarly, there is a difference between C (DNA)

binding to G (RNA) compared with G (DNA)

binding to C (RNA). Naef et al. [76] have since

agreed with [75] that this is the most likely cause of

the asymmetry. However, [76] also provide evidence

that modifying the protocol from labelling both

pyrimidines, C and U, to just labelling C, results in

substantial differences in the PM–MM distributions,

consistent with their earlier suggestions [46].

The affinity of a probe can be estimated from its

sequence composition [46, 69, 73, 74]. The resulting

affinity is a composite of how strongly the target

hybridizes to the probe as well as how much of

the hybridized target avoids being dissociated during

the washing phase [44], and both of these terms

are described in terms of free energy [6]. The sum of

the light produced from targets bound to any probe

on a GeneChip will consist of large numbers of

fragments that do not fully hybridize to the probe,

yet avoid being removed in the washing stages.

Models [8, 35] indicate that many hybrids are

partially zipped up and that targets are most likely

to be unbound towards the ends of the probes. The

existence of such a fall-off in hybridization fraction

may provide the mechanism for why models of

hybridization such as [69] have their fitted weights

of relative affinity falling off towards the end of

the probe.

USING LARGE SURVEYS
OF GENECHIPS TO HELP
INTEGRATE BIOPHYSICS
ANDBIOINFORMATICS
OF THETECHNOLOGY
The popularity of GeneChips has led to thousands of

publications and large, and rapidly growing, reposi-

tories of microarray data, such as the Gene

Expression Omnibus (GEO [77]). This provides a

glut of data available to analyse. The surveys of

GeneChip data enable the identification of probes

that are behaving in an unexpected manner.

Biophysical processes are responsible for some of

this behaviour and so identifying a common factor

behind why groups of probes are behaving unex-

pectedly will help to shed light on these processes.

Moreover, identifying and removing those probes

that do not reliably measure the same thing as other

probes measuring a gene will result in a more precise

estimate of gene expression. Exons are believed to

behave as ‘atoms’ of transcription, being either

included or not, within a transcript. Thus looking

at groups of probes that map to the same exon, and

only this one exon, provides good biological

controls. Each of these probes should show high

correlation with the other members of the group as

they are all measuring the same entity. Probe-pairs

showing poor correlation are therefore indicative of

unexpected behaviour in at least one of the probes.

We have begun to study the correlations between

probes that map to the same exon [34]. We

downloaded almost 40 000 Affymetrix GeneChip

CEL files from GEO, normalized the data, trans-

formed all intensities onto a log scale and then

correlated these signals across all examples of a chip

with a given design (e.g. HGU-133 Plus 2). All

the correlations for a given exon are collated into

a matrix, which is colour-coded according to the

correlation value. All of the correlation matrices can

be obtained from (http://bioinformatics.essex.ac.uk/

users/wlangdon). Figure 4 shows an example of one

such correlation matrix, for Ensembl exon

ENSE00001121710. This exon is part of the

SFRP1 gene (secreted frizzled-related protein 1),

and the probes are derived from the 202036_s_at and

202037_s_at probe-sets. All of the Perfect-Match

probes are closely correlated, except for Probe 7.

There is a large family, containing thousands of

probes taken from thousands of probesets, which

show large correlations across many experiments in

GEO [34]. Probe 7 in ENSE00001121710 is

a member of this family and so it is measuring

something in common with many other probes

(Figure 5). It is NOT measuring the same thing as

the other probes for ENSE00001121710. Probe 7

has sequence AGGGGAGAGGCATTGCCTTCT

CTGC, which contains a run of four contiguous

guanines. The large family of correlated outlier

probes all have a similar run of contiguous guanines

[34]. This run was named the G-spot. For the

HG-U133 Plus 2 design, there are more than 30 000

such probes (Table 1).

We find that the strength of the typical correla-

tion between probes increases with the length of

their G-spot. It is also dependent upon the location

of the G-spots within the probes, with the largest

average correlations resulting from probe pairs with

G-spots at their 50 ends, the end that is free. As an

example, for the HG-U133A data, [34] show that

about 80% of the more than 50 000 pairs of probes
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that have the G-spot at the free end have correlations

exceeding 0.5. Pairs of probes with G-spots at the

same distance from the 50 end also typically show

enhanced correlations over those pairs of probes,

which differ in the location of their respective

G-spots.

We suggest that the correlations in intensity for

probes containing runs of guanine result from the

formation of G-quadruplexes [34]. Each cell that

contains one group of these probes will have large

numbers of single-stranded oligonucleotides in close

proximity, all running in parallel and all containing a

run of guanines. This provides an ideal situation for

four probes to associate and form a G-quadruplex.

The formation of G-quadruplexes will result in the

probes involved all having their bases pointing

Figure 4: Correlationmatrix for all theprobes thatmap uniquely to the exon ENSE00001121710.The lower left quad-
rant represents the correlations between pairs of perfect match probes. The upper right quadrant represents the
correlations between the pairs of mismatch probes. The top left quadrant represents the correlations between the
perfectmatch andmismatch probes.Thematrix is diagonally symmetric.The numbers in each of thematrix elements
is10� the correlation for thatpairçhence along the diagonal thevalues are10,whichrepresent theperfectcorrelation
between a probe and itself. The numbers to the left of each of the rows represent the geometric mean signal for
each probewithin GEO.The numbers to the rightmeasures the standard deviation of the log intensities.
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inwards within the quadruplex, and thus these

cannot hybridize to the target. However, probe

density plays a significant role in regulating the rate

of duplex formation, and as probes interact more

strongly the formation of nucleation sites available is

modified [19]. The formation of the quadruplex will

free up space in its immediate environment thereby

enabling an increase in the kinetics and strength of

nucleation and hybridization to other probes spatially

adjacent to the quadruplex [34] (Figure 6).

THE IMPLICATIONOF THE
FAMILYOF PROBESWITH RUNS
OF CONTIGUOUSGUANINES
SHOWING CORRELATED
BEHAVIOUR
We see thousands of probes, taken from many

biologically unrelated genes, undergoing correlated

changes in intensity across thousands of experiments

in GEO. These correlated probes all have a run

of guanines in common, and we associate the

source of the correlation with the formation of

G-quadruplexes resulting from probe–probe inter-

actions on the surface of GeneChips. The discovery

of this family has several implications for analysing

the data from GeneChips.

Although the run of contiguous guanines makes

up a small fraction of the 25 bases within these

probes, fragments of RNA will hybridize particularly

efficiently to this region in probes, which are not

bound up in G-quadruplexes—the reduced probe

density in the immediate lateral environment of

the quadruplex acts to both increase the rate of

hybridization and also increase the strength of the

hybrid. The stability of nucleation and partial

zippering around the small number of bases in the

G-spot is greater than the binding to other
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Figure 5: The correlations in the logs of intensities between the probes in probe-set 202036__s__at and all the
other probes in thousands of GeneChips. Probes containing runs of four or more contiguous guanines are found
to correlate highly with thousands of other probes.

Table 1: The number of probes containing a contiguous run of four ormore bases

Chip ID Species Target GGGG CCCC AAAA TTTT

HG-U133 Plus2 Homo sapiens RNA 32547 32256 32474 72250
ATH-121501 Arabidopsis RNA 6680 5188 9939 21118
Drosophila-2 Drosophila RNA 64 7974 15057 25237
Exon 1.0 ST Homo sapiens RNA 199985 310884 379623 388654
SNP 6.0 Homo sapiens DNA 3588 291821 874472 986073
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nucleation sites for competing targets on the probes.

This means that it is difficult for other oligonucleo-

tides to displace the bound duplex in the G-spot

region, even though these other oligonucleotides can

result in a larger sequence of overlap when more

fully hybridized. This will lead to longer times to

reach equilibrium for these probes.

As many target transcripts can nucleate in the

G-spot region, probes containing a G-spot are

particularly prone to cross-hybridization. This

has implications for algorithms attempting to estab-

lish which probes undergo cross-hybridization.

Previously, bioinformatics studies of multiple-target-

ing have concentrated on large overlaps between

sequences [55, 56]. However, there is evidence

for 10–16 nucleotide sequence overlaps that were

sufficient to result in cross-hybridization between

spike-in transcripts and probes [33]. The evidence

from the G-spot probes pushes the size limit down

even further, because we find correlations between

G-spot probes occurring when there is only an

overlap of four guanines in common. These findings

have implications for modelling the stringency of

the washing of GeneChips, as the strength of the

duplex in the G-spot region is clearly sufficient

to last through the washing stages.

The existence of the correlations in expression,

across many experiments in GEO, suggests that

there is something in these experiments which

causes thousands of G-spot probes to change

together. We associate these changes in signal with

the formation of G-quadruplexes in G-spot probes,

and so there must be something that is causing

the stability of G-quadruplexes to change from

experiment to experiment. Within a G-quadruplex

the ionic radius of the central cation determines

how effectively the tetrads are stabilized [78] and

for alkali metal cations the affinity order is

Kþ�Naþ> Rbþ> Csþ� Liþ and for the earth

alkali the order is Sr2þ
� Ba2þ> Ca2þ> Mg2þ. On

the other hand, bivalent transition metal cations

such as Mn2þ, Co2þ and Ni2þ destabilize qua-

druplexes containing potassium [24]; this is likely to

be due to nucleophilic atoms within the guanines

coordinating to the cation, preventing formation of

the Hoogsteen hydrogen bonds that stabilize the

quadruplex [78]. Molecular crowding also helps to

induce quadruplex formation [79]. Furthermore,

ethanol has recently been shown to be a better

inducer of quadruplexes than even potassium cations

[80], possibly due to three effects: molecules of

ethanol bind at sites in the tetraplex to stablize it;

the change in dielectric constant caused by ethanol

diminishes the repulsion between phosphate chains;

ethanol enhances the affinity for cations. We note

that changes in concentration of different cations,

pH and even ethanol concentration will show subtle

variations from experiment to experiment due to

random and, quite likely, small differences in the

use of the protocol when running the GeneChips.

Another feature that might affect the chip-to-chip

variation in the extent of quadruplex formation is the

life-history of the chip prior to being run in the

experiment. A chip in a cold and dark environ-

ment for a long time may well form lots of

G-quadruplexes on its surface, whereas a chip that

is heated strongly immediately prior to being used is

expected to have fewer G-quadruplexes.

A further implication of our findings is there

may be other families of probes, which undergo

probe-probe interactions in a coherent manner.

Runs of Gs result in a quadruplex with the greatest

Figure 6: If groups of probes form G-quadruplexes, the remaining probes are able to hybridize efficiently,
because their runs of guanines are in a region of low probe density.
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stability [81]. However, C-tetrads [82], T-tetrads

[83] and A-tetrads [84] have been seen within

G-quadruplexes. A number of motifs are therefore

able to result in stacks of tetrads, including the

CGG repeats involved in fragile-X syndrome [85].

Another type of quadruplex is the I-motif structure

[86], which results from two parallel duplexes

containing runs of cytosine and protonated cytosine,

inserted head to tail. This motif may be possible on

a GeneChip but will require pairs of probe duplexes

to bend back towards each other. Furthermore,

groups of three to seven strands are now known to

result in complexes [87], including triplet-forming

complexes containing two bases the same and one

complementary base. Such triplets may be relevant

for describing the hybridization between a probe,

a strand of target RNA and an adjacent probe.

If quadruplexes and other probe–probe structures

exist, then these may be observable through tech-

niques such as scanning probe microscopy (SPM)

[88]. Solved structures of quadruplexes [82] indicate

that the quadruplex helices take up one chirality,

either left- or right-handed, and so a given probe

quadruplex will take up a helicity dependent upon

the bases causing the helix. The chirality should

be evident from SPM images, as will the number

of tethered probes forming the helix.

Wu et al. [26] have already identified that probes

which contain runs of contiguous guanines show

abnormal affinities. It is possible to remedy the

affinity models to include terms for the presence of

quadruplexes, as suggested by [73]. However, [73]

used a fixed free-energy change to describe the

impact of a quadruplex that will not vary from

experiment to experiment, and so the affinities will

also not change from experiment to experiment.

This is in agreement with the proposed biophysics

behind many expression measures, which assume the

affinity is constant for all experiments, and that

changes in intensity for a probe are due to changes

in RNA concentrations. However, we find that

most of the signal from probes containing runs of

guanines results from cross-hybridization and

shows large changes across the many experiments

in GEO. When there are lots of G-quadruplexes,

the remaining adjacent probes will be particularly

effective at hybridizing, because of the reduced

surface density of probes in the immediate environ-

ment of the adjacent probes. When there are few

or no G-quadruplexes then the probes will be less

effective at hybridizing because of the increased

surface density of probes. This demonstrates that

the affinity for non-specific hybridization cannot

be treated as a constant for these probes. We have

shown there are several viable mechanisms within

the Affymetrix protocol that could induce correlated

G-quadruplex formation. Furthermore, this correla-

tion would be across the chip rather than within

individual probe-sets.

G-spot probes are usually highly correlated and

so when one of the probes has a high intensity,

it is likely that other G-spot probes will similarly

have high intensities. If a G-spot probe has a high

value, and other probes in the probe set have high

values (because the gene is well expressed), then the

G-spot probe will not be excluded in calculations

of overall gene expression. Moreover, and crucially,

it will act to alter the detection of outliers within

the expression measure calculations. The misleading

G-spot values will be those that appear to tentatively

support the values seen by others in their probe set,

even though this support is coincidental [34]. We

therefore advise that G-spot probes should not

be included in the calculations of expression. This

can be done efficiently through modifying the

CDFs that result from increasingly sophisticated

bioinformatics pipelines, e.g. [56].

As an illustration of the potential benefit of using

a revised CDF file with G-spot probes omitted, we

present Figure 7. We have used the affycomp facility

[65] to benchmark the RMA procedure omitting

background correction (since this appears to be the

best of the RMA family of corrections) against

the known changes expected from the Latin-Square

spike-in experiment provided by Affymetrix. We

generated customized CDFs after removing probes

containing either 4Gs, 5Gs, the same number of

probes as the 4G set but chosen randomly ignoring

their sequences, and a similar set of random probes

but with same population size as the 5G probes.

The experiment used the HG-U133A array

for which there are 16 744 probes containing the

GGGG sequence. Of these, 3538 contain the longer

GGGGG sequence. Masking probes implies losing

information, which would diminish performance.

To properly assess the advantage of masking the

G-spot probes, we therefore superimpose curves that

plot the cumulating numbers of false and true

positives. The uppermost curve shows that the best

result results from removing the GGGGG probes.

This result is superior (for these data), because it

involves the removal of fewer probes—it should
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be compared with the curve marked ‘Rand2’ in

the diagram, since this shows the result of removing

an equivalent number of probes at random.

Comparison of the curves relating to the removal

of the GGGG probes and an equivalent number

(the ‘Rand1’ curve) of other probes shows the

greater improvement that results from removal of

the GGGG probes is offset to an extent by the

general loss of information. Nevertheless, removal

is an improvement on no action and the graph gives

an idea of the improvement.

Table 1 shows the number of probes containing

contiguous runs of four or more guanines (and

cytosine, thymine and adenine for comparison) in

several GeneChip designs. The design of Human

and Arabidopsis 30 GeneChips resulted in orders

of magnitude more probes that have the potential

to form G-quadruplexes than did the design for

Drosophila. Moreover, the Human exon array

contains a significant number of probes containing

runs of guanine. Their existence is likely to con-

found the analysis of this type of data, as there are

only four probes per exon. Whereas the genotyping

array has only a very small of probes containing

guanine runs.

We are not aware of studies that have identi-

fied the role of G-quadruplexes in modifying the

data from post-genomic technologies, other than

in microarrays, which we have described here.

However, we expect that the formation of

G-quadruplexes, and likely other structures, will

occur in any post-genomic experiment that utilizes

single-stranded nucleic acids of the same sequence

being held in close proximity.

SUMMARY
The study of Affymetrix GeneChips is an active

field, bringing together many disciplines ranging

from physics to genomics. However, the breadth

of the science makes it difficult to keep abreast of

the developments in each of these fields. We hope

this review goes some way towards bringing

disparate information to light. We also hope that

this paper will help users of GeneChips and also

the scientists in the machine-learning and systems-

biology communities, who wish to better understand

how calibration issues limit what can be inferred

from GeneChip data.

GeneChips are very popular, and this popularity

has led to many observations in the public domain.

Mining of this data indicates that there are a range

of systematic biases in the raw data, which can be

traced to the biophysics of the technology. Probes

on GeneChips are able to come into physical

contact, which modifies the environment of neigh-

bouring probes. Furthermore, the hybridization

between probes and a heterogeneous population

of transcripts in an RNA sample results in many

different types of interactions on GeneChips.

Informatics developments are also leading to better

tools in which biological knowledge can be used

to aid the analysis of the data. However, care still

needs to be taken when averaging signals from

multiple probes. A large family of probes, each

containing a run of contiguous guanines, shows

correlated expression across thousands of GeneChip

experiments. We suggest the existence of this family

is associated with the formation of G-quadruplexes

on the surface of GeneChips. The correlations

suggest that a small-sequence overlap, containing

Figure 7: The impact of G-spots on the ability of RMA
to detect True-Positives and to discriminate False-
Positives, from changes in the Latin-Square spike-in
experiment of Affymetrix, using the analysis tools
within Affycomp [65]. We have chosen RMA without
background subtraction, as this appears to be more
accurate than RMA with background subtraction [65].
The several lines result from: using RMAwith all probes
available; RMA__no4G (excluding16744 probesç�6.8%of
total number of probes); RMA__no5G (excluding 3538
probesç�1.5% of total number of probes); RMA__no
Random1 (excluding a random sample of 16744 probes);
RMA__noRandom2 (excluding a random sample of 3538
probes).
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the run of guanines, is sufficient for hybridization

between a probe and a target, with the resulting

hybrid being sufficiently stable that it avoids dis-

sociation during the washing cycle.
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