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ABSTRACT
Motivation: Two-dimensional Difference Gel Electrophoresis
(DIGE) measures expression differences for thousands of
proteins in parallel. In contrast to DNA microarray analysis,
however, there have been few systematic studies on the valid-
ity of differential protein expression analysis, and the effects
of normalization methods have not yet been investigated. To
address this need, we assessed a series of same–same
comparisons, evaluating how random experimental variance
influenced differential expression analysis.
Results: The strong fluctuations observed were reflected
in large discrepancies between the distributions of the spot
intensities for different gels. Correct normalization for pool-
ing of multiple gels for analysis is, therefore, essential. We
show that both dye-specific background levels and the dif-
ferences in scale of the spot intensity distributions must be
accounted for. A variance stabilizing transform that had been
developed for DNA microarray analysis combined with a robust
Z -score allowed the determination of gel-independent signal
thresholds based on the empirical distributions from same–
same comparisons. In contrast, similar thresholds holding up
to cross-validation could not be proposed for data normalized
using methods established in the field of proteomics.
Availability: Software is available on request from the authors.
Contact: D.Kreil@gen.cam.ac.uk
Supplementary information: There is supplementary mater-
ial available online at http://www.flychip.org.uk/kreil/pub/
2dgels/

INTRODUCTION
Two-dimensional (2D) polyacrylamide gel electrophoresis
is a high-throughput method used for the measurement of
changes in the expression levels of thousands of individual
proteins in parallel, affording a global view of the state of a
proteome (Lilley et al., 2002). Significant advances have been

∗To whom correspondence should be addressed.

realized by coupling 2D gel analysis with mass spectrometry.
Protein spots can rapidly be identified through in-gel diges-
tion, subsequent mass spectrometry and database searching
(Fey and Larsen, 2001).

There are methods for the quantitative study of protein
expression that do not use 2D gels, e.g. exploiting isotopic
labelling of samples. Approaches include labelling proteins
after extraction with a chemical tag which can be supplied in
several stable isotopic forms—e.g. ICAT (Li et al., 2003)—
and differential incorporation of a stable isotope during the
growth of an organism (Krijgsveld et al., 2003). These meth-
ods can largely be viewed as complementary techniques to
modern 2D gel experiments, having the potential to give
information on sets of proteins which are poorly represented
on 2D gels, such as integral membrane proteins. Both tech-
niques are still relatively new and there is little information in
the literature about the experimental variance associated with
their use.

In early comparative 2D gel experiments, each of the
samples to be analysed was run in a separate gel. For a long
time, the low dynamic range and high variability of the tradi-
tional silver stain limited quantitative work. Only recently has
fluorescent labelling been employed in the field of proteomics.
The post-electrophoretic fluorescent stain SYPRO Ruby gives
a dynamic range of four orders of magnitude (Lopez et al.,
2000; Malone et al., 2001). High gel-to-gel variation, how-
ever, makes the detection of corresponding spots unreliable,
and the quantification of true differences using this method is
very difficult (Asirvatham et al., 2002; Alban et al., 2003).

The task of detecting true changes in protein expression has
been greatly simplified by the introduction of Difference Gel
Electrophoresis (DIGE) by Ünlü et al. (1997). The method
has then been commercialized by Amersham Biosciences, and
has only last year become widely available to researchers. In
this approach, the samples to be compared are labelled with
spectrally resolvable fluorescent dyes. The labelled samples
are mixed before running them in a single 2D gel. Using the
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Bias in differential protein expression analysis

cyanine dyes Cy2, Cy3, and Cy5, up to three samples can be
examined in parallel, each dye giving an independent chan-
nel of measurement. The extent of sample loss during protein
separation in the first gel-dimension varies strongly from gel
to gel. Variation of spot intensities due to gel-specific experi-
mental factors, however, will be the same for all samples run
on a particular DIGE gel. Consequently, the relative amounts
of a particular protein in the samples will be unaffected. This
is exploited by differential in-gel analysis (DIA). For each
spot, the intensities in the respective dye channels can be com-
pared directly, giving ratios of fluorescence intensities as the
primary indicators of differential protein expression (Gharbi
et al., 2002; Yan et al., 2002).

For the combination of multiple gels into an experiment,
aliquots of all the samples to be compared can be pooled
into an internal standard, which is run in one channel on all
the gels for standardization purposes. This naturally extends
intra-gel comparisons of DIA to also allow inter-gel analysis
(Alban et al., 2003). Yet, converting the multiple gel images
from either type of analysis into expression difference calls
for individual proteins remains a complex challenge and is an
area of active research. Due to its ability to co-detect spots in
multiple images, the DeCyder software system has become
a widely used analysis platform, and is also used in this
laboratory for image analysis and quantification (Amersham
Biosciences, 2002, http://www.amershambiosciences.com/).
A comparison with other gel analysis tools is not attempted
in this study. The issues discussed here will similarly affect
other gel analysis software.

In this study, we focus on the influence of experimental error
in a typical DIA set-up. Our findings, however, equally apply
to multi-gel experiments standardized by a common reference
sample, although further issues that are not discussed here will
be of concern.

In an assessment of experimental error, two main classes of
errors must be distinguished: (a) random fluctuations (noise)
and (b) systematic trends (bias). Replicate experiments are
used to reduce uncertainty arising from noise. To combine
data from multiple gels, it is well appreciated that data must
be normalized, e.g. to compensate for differences in over-
all system gains. After normalization, the signal distributions
from multiple gels must be similar for meaningful statistical
analysis. In contrast to the field of DNA microarray analysis,
however, the effectiveness of different normalization meth-
ods has received little explicit attention in published analyses
of protein expression. Remaining system bias, such as any
dye-specific effects, must be removed before any statistical
analysis can proceed. Ideally, bias would be controlled at the
stage of the experiment in the laboratory. If this is not pos-
sible, it must be compensated by normalization. It should be
emphasized that no amount of replication can make up for a
lack of control for bias.

This study, for the first time, quantifies both types of error
in protein expression measurement by DIGE, and examines

how they influence differential expression analysis. Improved
methods dealing with the complications encountered are intro-
duced and validated. We also give principled advice on the
interpretation of DIGE analysis results.

SYSTEM AND METHODS
Experimental error was studied by a series of six same–same
comparisons. Aliquots of the same protein sample were indi-
vidually labelled with one of the three fluorescent cyanine dyes
developed for DIGE, giving a total of 18 samples. For each
of the six gels, samples labelled with different dyes were then
pooled and separated by 2D gel electrophoresis. Details of
experimental methods are available in the Online Supplement.

Image quantification for DIA
Image analysis was performed using DeCyder V4.0
(Amersham Biosciences, Sweden), a 2D gel analysis soft-
ware package designed specifically to be used with DIGE. The
estimated number of spots for each co-detection procedure
was set to 2000. As recommended, a conservative exclusion
filter rejecting spots with a slope greater than one was applied
to remove artefacts caused by dust particles. Spot intensities
are spot volumes, i.e. a particular spot intensity is obtained by
integrating the pixel intensities over the spot area.

The analysis has also been repeated with a preview version
of DeCyder V5.0 with no major differences observed.

DeCyder DIA data transformation
The DeCyder DIA module processes fluorescent spot inten-
sities in two steps. First, local estimates of background
fluorescence are subtracted from the measured spot intens-
ities, then signals are adjusted to compensate for dye-specific
system gain to give normalized spot intensities. This proced-
ure is common to analysis tools in the field of proteomics,
with differences only in the implementation of each step.

Background estimates in DeCyder are formed for each spot
by taking the 10th percentile of the pixel values observed on
the spot boundary. For overlapping spots, this may lead to
an overestimate of background fluorescence (cf. Fig. 1a). To
compensate for dye-specific system gain, one channel is used
as reference, and the other channels are then rescaled. This
implicitly assumes that there are no dye-specific effects other
than that one dye is brighter by a constant factor. In the case
of two channels with intensities (volumes) V1 and V2, and the
second channel being used as reference, the first channel will
be rescaled to

V ′
1 = aV1 (1)

with the constant factor a yet to be determined. The relative
intensities V2/V

′
1 unfortunately are asymmetric with respect

to over- or under-expression of a particular protein. Analysing
the data transformed to log-space is preferable:

R = log V2 − log V ′
1 = log(V2/V

′
1). (2)
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Fig. 1. DeCyder 3D display of spot image data. Spots are typically scored for smooth cone profiles and lack of irregularities. Spot boundaries
are shown by a dark-grey line at the base. (a) Overlapping spots are very common. If several spots overlap, estimation of background from
the pixel intensities on the spot boundary becomes problematic. (b) This protein spot has a typical smooth cone profile (c) An example of a
low-intensity spot is shown. These are particularly difficult to validate.

As a difference of log-transformed intensities, R is sym-
metric with respect to over- or under-expression. For non-
differentially expressed proteins, R is zero.

To determine the rescaling factor a, a normal distribution is
fitted to the mode of the empirical distribution of R, excluding
data that by an empirical criterion appears not to belong to the
main peak, and using a standard least squares gradient descent
(Amersham Biosciences, 2002). The factor a is then chosen
to shift the mean of the fitted normal distribution to zero,
reflecting the assumption that most proteins are not expected
to be differentially expressed.

The software then transforms the log-ratio R back to linear
space,

E =
{

V2/V
′
1 for R > 0, i.e., V2/V

′
1 > 1

−V ′
1/V2 for R < 0, i.e., V ′

1/V2 > 1
(3)

As this creates a disjoint distribution of values, however, we
prefer to work with the data in log-space.

Offset/scale normalization method
Following an observation from cDNA microarray analysis
that estimates of local background can be unreliable and that,
in lieu of effective local estimates, the simple model of a
globally constant background can be successful (Brown et al.,
2001), we wanted to transform each channel

V ′ = aV + b, (4)

where the scaling factor a adjusts for dye-specific system
gain and the additive offset b corrects for different back-
ground fluorescence intensities. Unfortunately, at present
there is no method to export spot intensities from DeCyder

that had not yet had a local background estimate subtrac-
ted. Consequently, the random error that the local background
estimation introduced could not be removed.

The transform (4) will, however, compensate for any
constant additive bias present after the subtraction of local
background estimates. The transform parameters a and b

in (4) are determined by an iterative trimmed least squares
maximum likelihood estimate assuming that most proteins
are not expected to be differentially expressed. Our imple-
mentation uses the code published by Huber et al. (2002, cf.
http://www.bioconductor.org/repository/devel/package/html/
vsn.html) for the normalization of DNA microarray data.
Adaptations by this laboratory include automatic convergence
detection, which is available now in the current release of the
published code. Both additive and multiplicative noise are
explicitly allowed for in the model employed,

y = α + βµeη + ε η ∼ N (0, σ 2
η ) ε ∼ N (0, σ 2

ε ), (5)

where y is the observed signal, µ the true expression level, α

a constant background term, β the channel gain, and η and ε

are normally distributed noise terms.
It should be noted that, if additive noise ε is also permitted,

it is not a log-transform that decouples the variance from the
signal intensity (a property desired for statistical analysis),
but an asinh-transform (Munson, 2001; Durbin et al., 2002;
Huber et al., 2002; Durbin and Rocke, 2003). The difference
between the two transforms is pronounced for signal values
close to zero, but disappears quickly for larger signal levels.
For the gels encountered in this study, normalized signal levels
were high, so that the asinh-transformed data were identical to
the log-transformed data within measurement error. In other
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Bias in differential protein expression analysis

experimental situations, however, this may not be the case,
and use of the log transform will lead to inflated variation
at low signal levels of the log-transformed normalized data.
We suggest using an asinh-transform instead of the log in
such cases, rather than try and deal with the signal-dependent
variance explicitly (the latter approach has been adopted by
Tonge et al., 2001).

Standardization of difference signal distributions
from multiple gels
To standardize for the varying degrees of scale of the distri-
butions from multiple gels, we compute

Z = (R − MR)/SR MR = median(R) SR = MADadj(R)

(6)

with the log-ratio R, a robust estimate of location MR and of
scale SR . MADadj is the median absolute deviation adjusted
for asymptotically normal consistency.

Validation of statistically determined thresholds
In a ‘leave-one-out approach’ to cross-validation, thresholds
for experimental variance were empirically determined from
data pooled from five of the six gels. The thresholds were
then tested on the remaining, sixth gel. This was repeated
so that each gel was once excluded from the pool and used
as a test set. This is a common approach to validation when
the number of sample sets is too small to allow full bootstrap
sampling.

RESULTS AND DISCUSSION
Differently labelled aliquots of the same sample have been
compared by DIGE in multiple independent experiments.
After normalization for dye-channel specific differences,
the fluorescent dye intensities are expected to show equal
amounts of protein in each channel for any particular resolved
spot. Whichever pair of dyes is being considered, any devi-
ations from the expected log-ratio of zero, therefore, reflect
experimental error. Two main classes of errors must be distin-
guished: random fluctuations (noise), and systematic trends
(bias). Both types of error can clearly be seen in the non-
normalized data when the spot intensities of one channel are
plotted against the respective intensities of another channel
(Fig. 2a and b). The increase of scatter at high intensities
observed in Figure 2a is indicative of multiplicative noise, and
justifies a log-transform, which also allows more appropriate
visualization of data spanning several orders of magnitude.
In the logarithmic plot, two deviations from channel ident-
ity are not noise: (a) the Cy5 channel has a higher system
gain than the Cy3 channel, and (b) low-intensity spots are
significantly brighter in Cy3 than expected by their Cy5 sig-
nal. Normalization needs to remove both effects in order for
a statistical analysis of differences between channels to be
meaningful.

Effectiveness of bias removal by alternative
normalization methods
The scale normalization of DeCyder DIA successfully equal-
izes the dye-specific differences in system gain. A bias for
low-intensity spots, however, is present after scale normal-
ization and can best be viewed as a plot of channel difference
as a function of channel average (Fig. 2c).

It could be argued that the spots affected by bias might
be artefacts of the spot-finding stage of image analysis. The
hypothesis was tested by manually reviewing all spots of a par-
ticular gel. This is a laborious process, which requires a skilled
operator to judge whether a spot looks ‘real’ by examination
of the raw image data (Fig. 1). Decisions are particularly dif-
ficult for low-intensity spots (Fig. 1c). Consequentially, as it
is low-intensity spots that show the bias, many affected spots
are removed in conservative manual review. A large number
of spots that manual review confirms as real, however, still
show the same type of bias.

Similar forms of bias have been observed in studies
examining normalization transforms for DNA microarrays
(Cui et al., 2002, http://www.jax.org/staff/churchill/labsite/
research/expression/Cui-Transform.pdf ), suggesting that a
different normalization transform might resolve the issue.
Indeed, using a normalization transform by Huber et al.
(2002) that explicitly allows for an offset correction to adjust
for dye-specific background fluorescence we could com-
pletely remove the bias (Fig. 2d). Table 1 highlights the
impact that the choice of normalization methods makes on
the perceived relative protein expression—under-expression
in the Cy5 channel judging from scale normalized data, but
non-differential expression according to offset/scale normal-
ization. Here, we have picked an arbitrary spot of moderately
low intensity from the set of spots that had been confirmed in
manual review.

Dye-specific background fluorescence and system response
can explain the systematic differences observed between the
channels. The gel itself, the glass plate support, scratches
and various non-protein matter will show fluorescence in the
wavelength region of concern. To assess dye-specific back-
ground fluorescence, three empty gels have been scanned
(see Methods section of the Online Supplement). For all
the gels examined, background fluorescence consistently
was strongest in Cy2 (5159 ± 545), slightly lower for Cy3
(4588 ± 836) and very low for Cy5 (212 ± 121). In contrast
to DNA microarrays, where the fluorescence outside of spot
areas may differ from non-specific spot signals (cf. Brown
et al., 2001), the background fluorescence of gel and support
as measured here will contribute additively to the fluorescence
of protein spots. This explains why a shift between channels
is observed in raw data and a normalization of channels is
required to remove that difference.

Spatial variation in background was clearly visible and
hence justifies attempts at local background subtraction. It
was largest for Cy3 (205 ± 41), moderate for Cy2 (165 ± 37)
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Fig. 2. One of the six gels examined was arbitrarily chosen for these and all subsequent figures (Gel number 4, see Supplement). (a, b) plot
the non-normalized spot intensities of one channel (Cy3) versus the respective intensities of another channel (Cy5). The data are as exported
from DeCyder, i.e. after subtraction of estimates of local background fluorescence. (c, d) show channel differences versus channel averages
for normalized data. Traditionally, the channel difference (also ‘log-ratio’), log2 (Cy5) − log2 (Cy3) = log2 (Cy5/Cy3), is plotted for easy
interpretation as fold-change. On that scale, +1 means 2-fold over-expression of protein in the Cy5-channel compared to the Cy3-channel;
−1 means 2-fold under-expression. (a) On a linear scale, the expected relationship between the two channels is seen. Dye-specific differences
in system gain are reflected in that the trend seen in the data deviates from the grey dashed line, which indicates channel identity. The scatter
is the result of experimental noise. (b) On a logarithmic scale, a bias for low intensity spots also becomes apparent. See text for discussion.
(c) Channel difference shown as a function of channel average for scale normalized Cy3/Cy5 spot intensities. (d) Channel difference shown
as a function of channel average for offset/scale normalized Cy3/Cy5 spot intensities.

and lowest for Cy5 (42 ± 35). As DeCyder already subtracts
estimates of local background fluorescence, if these estimates
were unbiased, no dye-specific trends would be expected in
the normalized data. Spatial variation was lower than the dif-
ferences observed between gels, suggesting that appropriate

normalization between gels was more critical than correct
estimation of local backgrounds. Offset/scale normalization
will compensate for such differences between gels and may
hence also be a good choice for laboratories that work with
multiple gels of one dye only. (The method presented here
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Table 1. Effect of failure to compensate for dye-specific background fluor-
escence, illustrated using an arbitrary spot of moderately low intensity from
the set of spots that had been confirmed in manual review

Channel 1
Cy3

Channel 2
Cy5

Spot intensities after subtraction of DeCyder
estimates for local background fluorescence

4652 2377

Spot intensities after scale normalization with
a = 1.18

5492 2377

DeCyder ratio (log2-ratio) E = −1.66 (R = −0.73)

Spot intensities after offset/scale normalization
with a1/2 = 1.86/1.54 × 10−3,
b1/2 = 32.8/39.5

41.45 43.16

Offset/scale normalized ratio (log2-ratio) E = 1.04 (R = 0.06)

requires, however, that spots from the different gels can fairly
reliably be matched to one another.)

Validation of significance estimates of expression
difference calls
Given normalized data, a major question of interest is the
determination of differentially expressed proteins. Due to
the inherent noise in the system, there is a chance of false
difference calls (type I error) as well as a likelihood of miss-
ing true differences (type II error). Traditionally, a method
is desired that indicates whether a certain protein is differ-
entially expressed, given a certain tolerance for type I and
type II errors per test. It should be emphasized that the error
rates specified are for the test of a specific protein spot. By
ranking differential signals, however, many hundreds of spots
are being evaluated, which must be accounted for in assessing
overall significance of a result. A conservative view will make
use of Bonferroni correction, while less stringent correction
procedures have recently been discussed for the analysis of
microarray data (Tusher et al., 2001; Dudoit et al., 2002).

An established approach to assessing the significance of a
differential expression signal for a specific protein, which is
supported by DeCyder, fits a normal distribution to the differ-
ence signals of all the spots from a same–same experiment.
Under the assumption that non-differential signals of future
experiments will follow a very similar distribution, the para-
meters of the fitted normal distribution can then be used in
the traditional way to assess significance of extreme values.
Thresholds of ±2 SD as suggested by Amersham Biosciences
(2002) then correspond to a type I error rate of 4.6% per test.
Under the assumption that a particular protein is not differ-
entially expressed, there is a chance of 4.6% that a log-ratio
beyond these thresholds is observed, wrongly classifying the
protein as ‘differentially expressed’. The two main require-
ments for this approach to be valid are that (a) the distributions

of difference signals of multiple gels are sufficiently similar
after normalization and (b) a normal distribution is a good
approximation to this distribution.

Comparison of the frequency histogram of difference sig-
nals with the fitted normal distribution (Fig. 3a) shows strong
deviations from normality in both asymmetry (skew) and the
presence of heavy tails (positive kurtosis). This is also seen
very clearly in a quantile–quantile (QQ) plot, where quantiles
of the observed distribution are plotted against the quantiles of
the fitted normal distribution (Fig. 3b). For good agreement,
the QQ plot will form a straight line of slope one.

The corresponding plots for offset/scale normalized data
(Fig. 3c and d) present a markedly improved picture. Heavy
tails, however, are still present. The improvement is caused by
the compensation for the dye-specific bias for low-intensity
spots. This can be shown by progressive exclusion of low-
volume spots from the scale normalized data. Normality
improves comparably (Online supplement), at the cost, how-
ever, of losing sensitivity. Approximately 50% of all data had
to be excluded to remove the bias this way.

In all cases, thresholds based on parameters of a fitted nor-
mal distribution are inappropriate due to the heavy tails of
the log-ratio signal distribution. If distributions from mul-
tiple gels were sufficiently similar, however, the 5th and the
95th percentile could, e.g. be used as empirical thresholds for
an empirical per-family error rate of 10% (cf. Tusher et al.,
2001). The considerably varying spreads of the distributions
from multiple gels, however, have to be standardized before
such an approach can be fruitful.

Thresholds that held up to cross-validation could not be
determined at all for data with bias, as the bias varied strongly
between different gels. Using a robust Z-score, offset/scale
normalized data distributions, however, are matched well
enough across multiple gels such that empirical thresholds
that hold up to cross-validation can be specified for empir-
ical per-family error rates of 10% or higher (Table 2). As can
be seen from the QQ plot, the empirical distributions can be
employed somewhat beyond the region where they are well
approximated by a normal distribution (Fig. 3d). For error
rates lower than 10%, cross-validation showed reduced reli-
ability due to the high gel-to-gel variation in the tips of the
distribution tails (Table 2 and Fig. 3d). Instead of using a
robust Z-score, by quantile normalization after robust regres-
sion, the distributions could be equalized over their entire
range. Such an approach would then have to be assessed
with spike-in experiments. The same is true for the popular
methods using loss smoothers. In general, future transfers of
concepts developed in the context of DNA microarray analysis
to proteomics seem promising.

To conclude, from the study of variation both within and
across gels of the series of same–same experiments, we find:

(1) Correct normalization for differences in fluorescent
background is essential. An ideal solution would
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a. b.

c. d.

Fig. 3. Distribution of difference signals (log2-ratios) in normalized data. (a, b) show the results of scale normalization, (c, d) are for
offset/scale normalization. In either case, strong deviations from normality can be observed. Consequently, empirical score thresholds must
be determined. (a, c) Histogram showing relative frequencies of difference signal values, compared with a best-fit normal distribution (grey
dashed curve). (b, d) Normal quantile–quantile (QQ) plot: Quantiles of the observed distribution are plotted against the quantiles of the fitted
normal distribution. For good agreement, the QQ plot will form a straight line of slope one: The light-grey long-dashed line corresponds to
identity. Axes values denote multiples of the standard deviation. The grey dashed horizontal lines correspond to score thresholds for 10%
empirical per-family error rates, the grey dotted lines represent the cutoffs for 5% error rates. For scale normalized data, no such cutoffs stood
up to cross-validation. See Table 2, and text for discussion.

also account for spatial variation in background
fluorescence. Data processed using the present
DeCyder implementation of local background correction,
however, showed clear dye-specific bias, which is most
apparent for spots of low intensity. To resolve this
problem, we recommend subjecting the data to the
offset/scale normalization presented here. This allows
the use of all spots, increasing the sensitivity of the

analysis. An alternative, less favourable solution is
removal of all spots of low intensity at the expense of
sensitivity, after which the data need to be renormal-
ized. In this study, about half the spots would have had
to be sacrificed to remove the bias this way. This can
be acceptable for certain experiments which focus on
high-intensity spots, only (e.g. with the intent of spot
identification by mass spectrometry).
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Table 2. Cross-validation results for Cy3/Cy5 (see Supplement for Cy2 results), shown for two different empirical per-family error rates (p*)

Gel excluded p∗ = 5% p∗ = 10%
Thresholds from pool False positives (%) Thresholds from pool False positives (%)
Lower Upper Lower Upper

1 −3.30 1.80 6.0 −2.39 1.49 10.7
2 −3.26 1.89 4.4 −2.28 1.53 10.1
3 −3.32 1.90 2.9 −2.35 1.53 8.6
4 −1.92 1.86 4.0 −2.37 1.52 8.8
5 −2.86 1.93 6.9 −2.20 1.54 11.6
6 −3.34 1.80 5.8 −2.38 1.49 10.9
Mean ± SD −3.00 ± 0.56 1.86 ± 0.05 5.0 ± 1.5 −2.33 ± 0.07 1.52 ± 0.02 10.1 ± 1.2

(2) For the assessment of the significance of expression
difference calls for specific protein spots, parametric
thresholds based on fits of normal distributions to the
data are not appropriate, as the observed distributions
deviate widely from a normal distribution. Thresholds
based on empirical distributions may be used. The
feasibility of that approach has been validated in this
study, and it was shown that after suitable normal-
ization or other removal of bias, and the introduction
of a robust Z-score, the thresholds −2.33 ± 0.07 and
1.52 ± 0.02 could successfully be used at an empir-
ical per-family error rate of 10%. It should be noted
that these scores may vary from laboratory to labor-
atory, also depending on the reagents and protocols
employed. The method presented here, however, can
be applied by individual groups to determine their
own validated threshold values for the dye-pairs and
protocols they use.
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