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We analyze publicly available data on Affymetrix microarray spike-in experiments on the human HGU133
chipset in which sequences are added in solution at known concentrations. The spike-in set contains sequences
of bacterial, human, and artificial origin. Our analysis is based on a recently introduced molecular-based
model (Carlon, E.; Heim, TRhysica A2006 362, 433) that takes into account both pretiarget hybridization

and targettarget partial hybridization in solution. The hybridization free energies are obtained from the
nearest-neighbor model with experimentally determined parameters. The molecular-based model suggests a
rescaling that should result in a “collapse” of the data at different concentrations into a single universal
curve. We indeed find such a collapse, with the same parameters as obtained previously for the older HGU95
chip set. The quality of the collapse varies according to the probe set considered. Artificial sequences, chosen
by Affymetrix to be as different as possible from any other human genome sequence, generally show a much
better collapse and thus a better agreement with the model than all other sequences. This suggests that the
observed deviations from the predicted collapse are related to the choice of probes or have a biological origin
rather than being a problem with the proposed model.

1. Introduction different ways: The DNA anchored at the surface is either
deposited with a drople{(spotting techniques) or synthesized
in situ by photolitography as in the Affymetrix arra§/s spotted
arrays the deposited strands are not limited in length and
typically vary from 30 to a few hundred bases, while in

DNA microarrays (see, e.g., refs 1 and 2) allow the measure-
ment of the gene expression levels of thousands of genes
simultaneously. This is a major step forward compared to
g%?g)lot?f:t r:reet h;p()jpsli é;brl‘r;o(ljenclyl?cr) gl?ilr?]?é d(ssu ecth O?Z eNnc;lghaetrr; Affymetrix arrays the lengths of the surface strands are fixed
time. The determination of gene expression levels is not the at 25 bases.. ) )
only application of DNA microarrays, which have been used [N @ previous papéfW? have analyzed a series of publicly
also for the analysis of genetic variance between individuals @vailable data of experiments performed on Affymetrix mi-
(single nucleotide polymorphisms), as efficient tools for DNA ~croarrays, using a simple model of the hybridization process.
sequencing, for the study of chromosomal defects, and for the " these experiments a set of se!ected genes are “spiked-in” at
determination of alternative splicing events. fixed conqentranons into a solutlon.contammg other types of

Despite the increasing popularity that microarrays have known RNAS. This set of data has been widely used as a test ground
in the recent years there are still some problems with the for algorithms designed to extract gene expression levels from
technology. There has been, for instance, only a moderate effortthe raw data. Affymetrix is one of the major commercial
in comparing different microarray platforms on the same producers of microarrays. Alth_ou_gh_ in Affymetrix arrays _the
biological systend.When this comparison was made, as in a DNA anch(_)red to the surface is limited to rather shc_:rt ollgos_,
recent study on expression analysis of stressed pancreas celld25 nucleotides long) one of the advantages is that a high density
it was found that different commercial platforms produced ©Of probe sequences per array can be obtained. In the latest
wildly incompatible datd. These problems call for a better ~generation 1400 000 different probes have been placed in a
fundamental understanding of the functioning of the microarrays. Single array. The large number of probes compensate for their
Such understanding will help researchers to design betterlimited length. Indeed Affymetrix uses multiple probes per gene,
algorithms for microarray data analysis based on the physical Which define a so-callegrobe set the number of probes per
chemistry of the underlying hybridization process. probe set varies ty.picaI.Iy b.etweer) 10 and 20. Another.peculiar

The basic mechanism underlying the functioning of DNA feature of Affymetrix chips is that it uses as control a mismatch
microarrays is that of hybridization (i.e., the binding between (MM) probe sequence, which differs from a perfect-matching
complementary single-stranded nucleic acids) between a strandPM) sequence only at the base at position 13: A nucleotide A
anchored at the surface and a strand in solution, referred to adS interchanged with T, and a nucleotide C is interchanged with
probe and target, respectively. Microarrays are produced in G-

In our previous workwe focused on the spike-in data set of
* Author to whom correspondence should be addressed. E-mail: the HGU95 human chipset, obtained with a background of RNA

e”iiT,?ggf‘Ji'SQi(‘?iﬁ‘;'yteer;ﬂﬁgﬂ nstitute from the human pancreas. More recently this has been substi-
f Ecole poﬁltechwnique Universitaire de Lille. tute(_JI by the HGU133 chipset, where spike-in experiments are
8 University of Utrecht. carried out with a background of RNA from the HeLa (human
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adenocarcinoma) cell line. Probe sets have been completely(a) ocC (1-a) € (b)
redesigned in the HGU133 chipset; moreover there are typically I I —
only 11 probes per probe set compared to the 16 probes of the t 25

HGU95 array. In this paper we focus on the analysis of publicly
available spike-in data on the HGU133 chip, building on our

I

previous work on HGU95. The first goal of this manuscript is p pt
to test the robustness of the model introduced in ref 7 to a new /\/i
set of data. i tl,j

The model of ref 7 features four fitting parameters: the
effective inverse temperatuf@ and concentratio, used in
the description of the hybridization in solution, and the effective
temperaturgs and saturation intensi#, used in the description ~ Figure 1. (a) Simple model of hybridization in Affymetrix microarrays
of the probe-target hybridization. The second goal of this paper used throughout this paper. It is defined by two basic reactions: (1)

. . . . - - hybridization between target moleculé}tp surface anchored probes
Is to investigate the physicochemical basis for the observed (p) leading to a duplept and (2) hybridization between target molecules

(fitted) values of these four fitting parameters. Third, we exploit i solution leading to the partial duplexés. In the model, the effect

an interesting feature of the spike-in data of the HGU133 of the hybridization in solution amounts to a reduction of the original
chipset: Different from the HGU95 data where spikes cor- target concentratior to a valueac. (b) Partial hybridization of a
respond to human genes, the spikes in the HGU133 have beeriragment in solution complementary to the target RNA sequence from
selected between human, bacterial, and “artificial” sequences.basei to basej (1 =i <j = 25).

The latter were selected by Affymetrix to avoid cross-hybridiza-
tion with any known human coding sequence. We will compare

the quantitative agreement between spike-in data and the mode Many different scenarios of hybridization in solution have

of ref 7, distinguishing these three types of sequences. been discussed by other auth#t4° In the model introduced

Several papefs'* have been devoted to the modeling of i, ref 7, we approximate the targetarget hybridization with
physicochemical aspects of DNA hybridization to surface the expression

anchored strands using the Langmuir model, i.e., the basic model

for surface adsorption/hybridization, and its extensions. The 1

different approaches have been reviewed recently, for instance, o~ = ' A (~(37 ©)
. ave ; 1+ &expB'AGE")

in refs 15 and 16. In principle several different effects may play
a role in the hybridization process. For instance, it has been
pointed out!?that electrostatic interactions between negatively
charged strands in solutions and a negatively charged layer o
DNA molecules may have the effect of impeding hybridization.
Other issues that have been discussed in the recent literatur
include the effect of the surface on the hybridization dynarics,
the length of DNA binding to the surfadéfactors influencing

the limiting behavior of the hybridization at strong target
concentration? and the role of marker molecules (as the biotin
linker) on the hybridization affinity17-1° All these effects will
most likely play a role in microarray experiments as well.
However, since we could not incorporate these effects into our
model without introducing new fitting parameters, we decided
to use the basic model of ref 7.

remaining (1— a)c form stable duplexes with other partners in
Folution (Figure 1a).

with g and & fit parameters andA\GE” = AGg(1, 25), the
f(sequence-dependent) RNA/RNA free energy for duplex forma-
tion in solution at 37 C calculated over the whole 25-mer
éength; in close approximation, the binding free energies at 37
and 45°C (the actual experimental temperature) are almost
identical, apart from a small scaling factor, which is adsorbed
into the rescaled temperatyfé. In the next section, we will
discuss the steps leading to eq 2 in more detail.

In the model defined in eqs 1 and 2 the hybridization free
energiesAG and AGr are calculated from tabulated experi-
mental data for DNA/RNAL22and RNA/RNAS duplex forma-
tion in solution. The four parametess g3, ', and€ were fitted
against the spike-in data of the Affymetrix array HGU95a in
ref 7. The parameteys, €, andA will be discussed in sections
3 and 4. The parametgris the inverse temperature. Instead of
fixing it to the experimental value we have kept it as a fitting
parameter as explained in ref 7. The best fit yields a valee
¢ 700 K, which is twice as large as the true experimental
temperatureT = 45 °C. This suggests that the actual free
energies involved in the chip hybridization are roughly 50%
lower than theAG estimated from the experimental data in
solution. The possible origin of this discrepancy has been
discussed in ref 7. It has also been recently suggested that the

2. A Simple Model for Hybridization in Affymetrix
Arrays

In this section we briefly recall the model introduced in re
7. Two basic processes are considered: (1) targetbe
hybridization and (2) targettarget hybridization in solution.
According to the model the fluorescence signal measured from
a given probe is

HAG origin of this difference may be due to the presence of a
| = |0+A‘1C— (1) denaturant, dimethyl sulfoxide (DMSO), used in Affymetrix
1+ ace® experiments$ It is likely that many other effects may play a

role such as polydispersity in probe lengths, molecular crowding,
where |y indicates a background level due to nonspecific partial target-probe hybridization, etc. In a recent wétkve
hybridization,A sets the scale of the intensitiesis the target included part of these effects and found indeed a reduction of

concentration (a measure of the gene expression |eA&)is the effective temperature b~ 500 K, still somewhat higher
the target-probe hybridization free energy, = 1/RT is the than the true experimental value but significantly closer to it.

inverse temperature, amlis the universal gas constant. Here, This more refined model however does not substantially improve
o. models the reduction in the concentration of available targets the fit to the experimental data; we therefore restricted ourselves
due to the targettarget hybridization in solution: Only a to the original model introduced in ref 7, with the same set of
fractionoc is available for the hybridization with probes as the fitting parameters.
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We note that we fit mismatches and perfect matches with 30
the same model. The difference between the two is that there is
a different hybridization free energyG: One expects a lower
signal for mismatches compared to those of perfect matches,
due to weaker binding. This is not always the case; as remarked 20 ¢
in several studies for a substantial fraction of probes (30%, as
reported in ref 10) one observes “bright mismatches” for which
the mismatch intensityuv exceeds the intensitipm of the
perfect match. However, it has been obset¥tht bright MM 10
come predominantly from probes with low intensities, which
suggests that bright mismatches are associated with weak
specific hybridization when the signhlis dominated byl in
eq 1. _ %20 30 40

In recent work* we also compared the current model with log(or '=1)
the approach based on po_sition-dependent effective affir_1itie_s Figure 2. Comparison of the summation in eq 5, equatgo® — 1,
as, for instance, described in refs 10 and 13. The conclusion isang its approximation in eq 2, equal ¢o* — 1, for the first 2000
that the two approaches are fully consistent with each other, spike-in sequences of HGU133. Note that a changw rorresponds
provided that various effects are incorporated such as partialto a vertical shift over logg); in this figure, we used, = 1. The
unzipping of the probetarget complex, less than 100% straight line is a fit given by = x + b with b = —14.1.
efficiency in the probe growth during lithography, and entropic
repulsion between the target and the substrate. These additionalhe sequence, the abundance of short sequences with length
effects are the main factors causing position dependence (andvill decrease astfj] ~ 4'. This scaling breaks down beyond
thus allowing for a comparison with position-dependent effective some length.; assuming for the human transscriptome a total
affinities); for a quantitative prediction of the intensities, their length of 10 nucleotides, a random sequence longer than 12 is
combined effect can be well approximated by a slight decreasemore likely not present at all, sincé?4> 10’. We therefore
of Bin eq 1, and they are therefore not included in the current take as our approximation
study.

-1

log(a, -1)

. 4707 forj—i<12
3. Hybridization in Solution [ti] = {CO : (6)

0 otherwise

We now discuss the approximations leading to the form of ) ) ] .
. We denote the concentration of free 25-mer targets in solution Here, co is a measure of the RNA concentration. Using this
as ], the concentration of free target strands that are comple- @pproximation for the concentration of complementary strands,
mentary from nucleotideup and including nucleotideas fijl, we can now compare eqs 2 and 5. Figure 2 shows the more
and the concentration of duplexes between these twetigs [  €laborate model eq 5 as a function of the approximate form eq
Chemical equilibrium (Figure 1b) yields for the equilibrium 2, with the values for the fitting parametg#'sandc taken from

constant ref 7. There is a reasonable agreement between the two.
A Since eq 5 has a better microscopic foundation than eq 2, it
_ Mg —BAGR() 3 should in principle allow for a better estimate of the hybridiza-
W [tfi,j] =€ ®) tion in solution. There are however severe limitations to the

use of eq 5. In the hybridization in solution, there is a
whereAGkg(i ) is the RNA/RNA hybridization free energy for ~ competition between the contributions of short sequences, which
target molecules in solution, which are complementary from are abundant but have a low affinity, and long sequences, for

nucleotidei up to and includingj, and 8 = 1.59 mol/kcal which the concentration is low but the affinity is high. The
(corresponding to the experimental temperature of@p For concentration drops on average approximately by a factor of 4
a given gene, the measure of the gene expression level that onger added length (eq 6), but the affinity grows by approximately
wants to determine is the total target concentratigiven by [AGO~ 2 or 3 kcal/mol, the average value of RNA/RNA
R interaction parametef8. Since expBlAGD > 4, the longer
c=[t] + z [tt;;] (4) sequences dominate the hybridization in solution. However, as
]

discussed above, beyond lendth~ 12, there simply are no
complementary strands. The accuracy of the more elaborate
model eq 5 thus hinges crucially on knowing the longest
complementary strand that is transcribed as well as its affinity

Solving eqgs 4 and 3 we find for the fraction of single-stranded
target in solution

[t 1 and its concentration. Since the approximate model eq 2 is not
og=—= (5) expected to perform worse than the more elaborate model eq
c 5, we keep using the former.

14+ St ] exp(BAGK j
%[ 1l eXPBAGH() The data points in Figure 2 can be fitted by a straight line

with slope 1: The value off' = 0.67 mol/kcal in ref 7,
Note that the summation in the denominator of eq 5 was corresponding to 725 K, apparently is the appropriate value to
replaced in the approximate expression eq 2 by the single termdescribe the experiments at a temperature of@5The offset

¢ exp(B’AG(RW)), with fitting parameter€ andp'. in the straight-line fit is equal to lo@) — log(co). Since the
_Equation 5 requires as input estimates of the concentrationstraight-line fit has an offset of 14.1 and since we used the
[ti;] of complementary sequences with lengths j — i + 1 fitted value of¢ = 2 x 1072 pM in ref 7, an estimate of the

present in solution. Assuming that all four nucleotides are RNA concentration i€y = € exp(14.1)= 30 nM. Even if we
roughly equally abundant and that there are no correlations alongdo not use the more elaborate model eq 5, it provides us with
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Figure 3. Plot of intensity vs concentration for three spike-in genes
of the HGU133 chipsetlmax indicates the saturation value obtained
from a nonlinear fit with three parametels, (A, andK), based on eq
8.

a microscopic basis for the values of the parameieesndC in
the approximate model eq 2.

4. Signal Saturation Level

If the target concentratioo and the binding energkG are
sufficiently high, then the Langmuir isotherm saturates to a
maximal value. From eq 1 we find farexp(3AG) > 1

I p—

max

lo+ A~ A @)

where we have used the fact that typically the background level,

lo, is much lower than the value & The saturation intensity
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Figure 4. Plot of | — I as a function ofAG — RT log o for four

sequences spiked-in at a concentratiort 6f 512 pM. The numbers
indicate the probe set numbers. Smaller characters are used for the MM
signals. Solid lines represent the Langmuir model as given by eq 2.
The data are consistent, except a few outliers, with the Langmuir model
with a roughly constant saturation lev&l~ 10%.

almost complete probes, and an even further increase in
concentration will bring into play shorter and shorter incomplete
probes. Consequently, the Langmuir fit in eq 8 breaks down
near saturation; extrapolation to high concentration is an
unreliable procedure.

A second cause of worry is that comparing fluorescent

increases if targets are bound to almost all probes. Since theintensities from different chips is also potentially unreliable,
number of probes does not vary between the sequences beingince the microarrays might have undergone slightly different
measured, this saturation intensity is also expected to beprocessing during the washing and staining. Since Affymetrix
sequence-independent and, more specifically, should not dis-microarrays cannot be reused, the spike-in measurements used
tinguish between perfect matches and mismatches. A recentin refs 9 and 14 required a new chip for each concentration.

analysis of the Latin square 8ét reported widely different
values for the saturation intensity. It is worth clarifying further
this issue here.

To avoid these two potential sources of error, we therefore
consider the intensities for a given probe set at a specific
concentration, i.e., constaatand variableAG anda in eq 1.

The obvious procedure to determine the saturation intensity The data belong to the same array. An example of this type of

is to look at the intensity of a probe as a function of
concentration. Assuming an effective affini for probe
sequencss, the intensityls(c) as a function of concentration

is given by

ALK,

IS(C) = IO,s + 1+ CKS (8)

analysis is shown in Figure 4 for a concentrationcof 512

pM. On the horizontal axis we plasG* = AG — RTlog a.

The solid lines are given by the Langmuir curve in eq 1. Note
that a large majority of the probes align along the expected
curve, with a few exceptions as, for instance, for probe 11 (both
PM and MM) for the probe set 204414 _at. Therefore, the data
are consistent with a value #froughly constant in eq 1, which
suggests indeed that the large variations,is obtained from

in which lps is the (sequence-dependent) background intensity the extrapolations of the data in the earlier analysis are more

due to nonspecific binding. A plot df versusc for two probes
of the HGU133 spike-in set is shown in Figure 3. TakipdA,
andK in eq 8 as fitting parameters and extrapolating to high
concentration then yield the saturation intensity.

Two research groufd* followed this procedure, and both
found saturation intensities that vary wildly between different

likely to be an artifact of the extrapolations. Note however that
some variability of the saturation level can be seen in the data
of Figure 4. Typically this variability is approximately 20%.
To keep our model simple we will keep constant in the rest

of the paper. An interesting possible explanation of the
variability of A has been given in ref 14, i.e., that this variation

sequences. A first effect that can cause deviations from theis due to the posthybridization washing of the array.

Langmuir fit in eq 8 is that the lithographic process, through
which the probes are synthesized in situ in Affymetrix chips, is
not 100% efficient. As estimated by Forman et2algnly

approximately 10% of the probes reach the full length of 25
nucleotides. At low intensities far from saturation, the incom-

Yet another different way of addressing the issue of the
saturation intensities is to analyze the histogram of the intensities
on the whole chip, as in Figure 5, which shows both the
intensities for the HGU95 and HGU133 spike-in data. To reveal
the data at high intensities, they are plotted in a-tog scale.

plete probes can be safely ignored since their affinity is much In the figure we note a decrease in the histogram ardusd

lower than that of the fully grown probes. However, under

10 000, sharper in the HGU133 chipset, which is consistent with

conditions where the fully grown probes are saturated, clearly the estimate of the saturation intensity obtained from the fits of

there will be contributions to the fluorescent intensity from the

intensities versuAG — RTlog a, as given in Figure 4. Note
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Figure 5. Histograms of the PM and MM intensities for the Latin
square experiments in legog scale for the chips (a) HGU95a and (b)
HGU133. The plots contain (a) 19 and (b) 12 histograms, referring to
different experiments. The dashed lines are positiondd=atl0 000
andl = 15 000. (Intensities are given on the Affymetrix scale.) Insets:
Histograms of the total intensity of PM and MM together.

10" 10°

that in Figure 5b the decrease is 100-fold in the range 10 000
< | < 15 000, which suggests that the data are consistent with
a roughly constant value of the saturation. However, a closer
inspection of the histogram of the HGU133 for PM and MM

intensities separately reveals that the estimated saturation values

for the two may be different. In the case of PM intensities alone
the drop is rather sharp dt~ 10 000; however the MM

Heim et al.
X = ac ¢ (9)

If the model is to be trusted, then the data for different values
of ¢ and different probe sequences (i.e., differ&@ and o)
ought to “collapse” onto a single master curve

AX

T1+x (10)

=1,

This collapse has indeed been observed in the large majority
of the spike-in genes of the HGU95a chip&ehterestingly,

the very few outliers observed in that case could be explained
as annotation errors or unbalance of free energies used for
specific nucleotides, as discussed in ref 7.

We choose here the same fitting parameters used in ref 7 for
the HGU95 chipset, that isA = 10 000, = 0.74 mol/kcal '
= 0.67 mol/kcal, an@& = 10~2 pM. These parameters fit equally
well the HGU133 spike-in data.

In Figures 6-8 we show the collapse plots for all 42 genes
of the spike-in data set HGU133. Each plot contains ap-
proximately 200 points, which all tend to cluster along the
Langmuir curveAX/(1 + x') (in some cases much better than
others). All 13 concentrations, which range from 0.125 to 512
pM in the spike-in experiment, are shown. The intensities
measured at = 0 are taken as estimates of the background
levellp in eg 10. In the collapse plots, only the MM sequences
for which AG could be estimated are shown, as the mismatch
free energies in RNA/DNA duplexes are known only for a
limited set of mismatche®.(We could associate a free energy
to approximately 30% of the mismatches, as discussed in ref
7.)

The HGU133 spike-in set contains 4 bacterial sequences and
8 artificial sequences (Figure 6) and 30 human sequences
(Figures 7 and 8). A perfect agreement with the Langmuir theory
would imply that all data align along the curve given by eq 10,
which is shown as a solid line in Figures-8. In general the
agreement is best for the artificial sequences. Occasionally, also
some human sequences collapse well into a single curve in good
agreement with the Langmuir model, but in general their
behavior is worse than that of the artificial ones. To quantify
the data dispersion we introduce the variable

o)

wherel is the measured intensity ahdis the theoretical value
as predicted from the Langmuir isotherm (eq 10) fdr

(11)

intensities seem to saturate at lower intensities, a feature that iscorresponding to the measurkdFor the definition ofw in eq

not seen in the HGU95 data (Figure 5a). The number of MM
probes reaching an intensity close to the saturation level in the
histogram of Figure 5b is quite small, so the fact that the MM
and PM reach a different saturation level cannot be concluded
for sure.

Also the low-intensity side of the histograms in Figure 5
contains interesting information. For both the HGU95 and the
HGU133, the intensity drops steeply below a minimal intensity.
For HGU95, this drop occurs &tin ~ 70, while for HGU133
the drop occurs atmin =~ 30. This increase of the dynamic
intensity range by more than a factor of 2 is a clear demonstra-
tion of the fast rate of improvement in microarray technology.

5. Analysis of Data Collapses

As a test of the validity of the model we plotteithe data as
a function of the rescaled variable

11 we have kept only the values bfn the range 100< | <
10000. We determine its averag&wlland standard deviation
ow. If the data are well-centered around the expected behavior,
then one hasw= 0, while o, is @ measure of the spread in
the data.

The values oftwlJand oy, for the bacterial, artificial, and
human sequences are given in Tables 1 and 2, respectively. We
note thato, is on average the lowest for the artificial sequences
with a typical value oy, = 1. Only for two human probe sets
(205790_at and 207540_s_at witty ~ 0.7) the collapse is
better than that of the artificial sequences. For three human probe
sets (204205_at, 207641 _at, and 212827_at) the collapse is very
poor as indicated by @, > 2. The collapses in the four bacterial
sequences have a somewhat higher dispersion compared to the
human sequences.

A very interesting feature of the whole analysis is that the
quality of the collapses is much better for artificial sequences
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Figure 6. Collapse plots for the four bacterial and the eight artificial sequences of the HGU133 spike-in set. In these plots the background-
subtracted intensities for a given probe set are plotted as functions of the rescaled varga in eq 9. The data correspond to all spike-in
concentrations for a given probe sets. Solid lines correspond to the Langmuir isotherm. In comparison with the human and bacterial sequences the
artificial sequences are characterized by the best collapses.

4

than for any other sequence. Artificial sequences have been9 shows a plot of fitted concentration versus spike-in concentra-
chosen by Affymetrix to be as different as possible from any tion for the artificial sequences. We limit ourselves here to show
human RNA, to minimize the effects of cross-hybridization. the data for these sequences, but the trend is quite general and
Their preparation, as far as labeling and target fragmentationvalid for other genes as well. The solid line in Figure 9
are concerned, is the same as that for all other Sﬁﬂ(AS.in corresponds to a ling = x, which means perfect agreement

all collapses the same set of parameters is used. Therefore th@etween spike-in and fitted values. The two other lines cor-
high o, for some probe sets is very likely an indicatipn_that the respond toy = 2x andy = x/2, drawn as guides to the eye.
selected probes are not yet optimal. Possible deviations from As shown in Figure 9, most of the data fall in the range

the theory are due to cross-hybridization. between the two lines, except for the spikes TagA and TagF,
o _ which give a much lower fitted concentration. All the points
6. Determination of the Expression Level follow approximately straight lines with slope 1, except for the

The model defined by egs 1 and 2, once all parameters havehighest.spike-in concentrations, corrgsponding to 256 and 512
been fixed, can be used to fit the concentratistarting from pM. This is due to the fact that at high concentrations many
the measured intensities. The target concentration in solutionProPes are very close to saturation.
is a measurement of the gene expression level, and it is the We note also that the fitted concentrations are all systemati-
guantity one wants to compute from the raw microarray data. cally lower than the spike-in values, as most of the concentra-
As the concentrations in the spike-in experiments are known, tions fall in the interval §spike-in/2, Cspike-in]. This is a conse-
we can compare the known values with the fitted ones. Figure quence of our choice to use the fitting parameters from a
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Figure 7. Collapse plots for human sequences of the HGU133 spike-in set (part 1). The probes that are complementary to targets with the largest
folding free energies are emphasized (Table 3). They correspond to probes 204430_s_at10 and 204513 _s_at4.

previous study of spike-in experiments on HGU95. We have 7. One Cause of Outliers: Target Secondary Structures
chosen not to refit these parameters here again for HGU133 to

ltft;%fofzg gg:;e;rsl;;\t/izléd'g' I;r:teaSI'g::btlj;ier;s:ggaitr']ogg;e RNA, tend to form stable folded confo_rmations by binding of

: . . l 2~ "~ complementary bases. Currently, algorithms that calculate RNA
expression measurements one is only interested in fold Va”at'onssecondary structures are to be trusted for sufficiently short
of expression levels between different experimental conditions. mgjecules, say less than 50 nucleotides, which is the situation
The fact that the data of Figure 9 follow lines with a slope of for Affymetrix microarrayS, where RNA targets are fragmented
approximately 1 guarantees that the fold change in concentrationbefore hybridization. The average target length is 50 nucleotides,
in different experiments is correctly estimated. but probably only shorter fragments contribute to hybridization.

It is well-known that single-stranded nucleic acids, particularly
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Figure 8. Collapse plots for human sequences of the HGU133 spike-in set (part 2). The probes that are complementary to targets with the largest

folding free energies are emphasized (Table 3). They correspond to probes 207641 _at5 and 209354 _at8.

. . TABLE 1: List of Values of wlJand a,, for the Bacterial
We used the Vienna packegdor the calculation of folded 5 the ‘Artificial Sequences in the Spike-In Set HGU133.

RNA structures that may form in solution and impede hybrid-
ization. We considered first 25-mer targets in solution exactly

complementary to the probes of the HGU133 spike-in data set. AFFX-DapX-3_at
Table 3 shows a list of probes in this set, whose complementary

AFFX-r2-TagA_at —1.05 0.97

target has the lowest folding free energy, i.e., that of the most AFFX-r2-TagB_at —0.51 0.83

stable conformation, calculated at the experimental temperatureaFFx-r2-TagC_at

0.43 1.08

of 45 °C. Given a folding free energiGsoiq, ONe can use the  AFFX-r2-TagD_at —0.03 0.90

probe set Wl  ow probe set WO ow
0.08 1.49 AFFX-PheX-3_at 0.16 1.55
AFFX-LysX-3_at 0.89 2.46  AFFX-ThrX-3_at 0.22 1.59

AFFX-r2-TagE_at—0.32 0.82
AFFX-r2-TagF_at—0.46 1.09
AFFX-r2-TagG_at0.11 0.90
AFFX-r2-TagH_at 0.11 1.22
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TABLE 2: List of Values of OvOand gy, for the Human 10° . . . . =
Sequences in the Spike-In Set HGU133. o

probe set Ym| Ow probe set w0 Ow 10°
200665 s at 054 1.26 205569 at —0.28 1.12 E
203471 s at  0.39 1.43 205692 s at 024 1.27
203508_at 045 1.83 205790_at —0.78 0.76 10°
204205_at 0.86 2.11 206060_s_at 0.52 1.66
204417 _at —-0.24 1.8 207160_at —0.32 1.06 = .
204430_s_at —0.48 1.13 207540_s_at —0.29 0.62 = 10 + g
204513 s at —0.68 1.16 207641 _at 024 272 © ]
204563_at —0.57 144 207655_s_at 0.76 1.06 o
204836_at —0.04 141 207777_s_at —0.14 1.11 107 ¢
204912 _at —-0.31 1.35 207968_s_at —0.85 1.66
204951 _at —0.15 1.48 209354 _at 0.04 141 1
204959 at 133 1.62 209606_at 077 144 10 &
205267_at 0.36 1.23 209734_at —0.20 1.51 i
205291 at —0.44 1.24 209795_at 0.63 1.71 ST S
205398 s _at —0.15 1.37 212827 _at 0.61 2.53 10_| 100 101 10° 103 104
TABLE 3: Minimal Folding Free Energies for the Targets spike—in

(Assumed to be 25-mers) Complementary to the Probes
Forming the Spike-In HGU133 Data Set Figure 9. Plot of the fitted target concentration as a function of the

spike-in concentration for the artificial sequences. The solid line

probe —AGoig corresponds to the diagonak= x, while the two dotted lines ang=

probe set number (keal/mol) x/2 andy = 2x and are drawn as guides to the eye. We note a systematic
204513_s_at 4 8.70 shift of the estimated absolute concentration compared to that of the
207641 _at 5 8.16 spike-in one, although the fold variations of the concentrations are
204430_s_at 10 7.79 correctly estimated as the majority of the data follow lines parallel to
209354 _at 8 7.67 the diagonal in the plot.
207540_s_at 10 7.45
AFFX-r2-TagA_at 1 6.52
205398 _s_at 1 6.43
AFFX-PheX-3_at 10 6.18
204836_at 10 6.17
203508_at 2 6.10
206060_s_at 3 6.05

@ These free energies were calculated with the program RNAfold.

two-state model approximation to finmhig, the probability that
the sequence is folded into the most stable conformation
Figure 10. Folding configurations for the four targets with the
@ ACGni/RT lowest free energy, from left to right: 204513 s at4, 207641_at5,

Prolg = (12) 204430_s_at10, and 209354 _ats.

1+e AGs0id/RT

We have analyzed the folding free energies of 25-mers
complementary to all of the probes in the HGU spike-in set.
We found that approximately 50% of the targets have a folding
free energy lower than 1 kcal/mol, so secondary structure
formation can be neglected safely. Approximately 10% of the
targets have a folding free energy higher than 4 kcal/mol, so
for this fraction the secondary structure formation may interfere
with the target-probe hybridization.

The correct estimate of the folding probability involves a
complex calculation over fragments of all lengths, possibly
including sequences neighboring the 25-mer part complementary
to the probe. However the folding is expected to have a relevant
effect for at most 10% of the probes. A possible way out is that
of excluding from the analysis of the gene expression levels
those probes whose 25-mers folding free energy is above a
certain threshold.

where we usél = 45° C. According to this expression for a
folding free energyAGsoig = —8 kcal/mol, one finds - proig

~ 4 x 1075, and forAGiq = — 6 kcal/mol one finds & proiq

~ 107*. The large majority of the targets complementary to
the probes listed in Table 3 are thus folded and not expected to
participate to hybridization.

Figure 10 shows the folding configurations for the four targets
with the lowest free energies in Table 3. As shown in Figures
7 and 8 the corresponding probes have a signal that is a few
orders of magnitude lower than that expected from the Langmuir
model, although not as low as that derived from eq 12, using
the AGq listed in Table 3. For instance, from the measured
signals we find an intensity lower by a factor®ifor the probe
204513_s_at4 instead of a factor®lds deduced from eq 12.
This difference could have several origins. First, the hybridiza-
tion in solution described by the termin eq 2 may already
take into account some secondary structure formation. Second
the RNA in solution is present with sequences of all lengths.
The free energies listed in Table 3 refer to 25-mers, so shorter In this paper we have extended a previous study
sequences will have a lower folding probability than that Affymetrix spike-in experiments on the chip HGU95 to a novel
deduced from eq 12 on the basis of the free energies of 25-HGU133 chipset. We used the model introduced in ref 7 that
mers. Third, even if some secondary structure is present,takes into account both targgbrobe and targettarget hybrid-
hybridization with the surface-bound probes is still possible if ization in solution. The hybridization free energies are calculated
the folded configuration has some dangling ends from which from the nearest-neighbor modelusing the experimental
binding can initiate. parameters for RNA/DNA22and RNA/RNA23 There are four

8. Conclusion
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global fitting parameters in the model that we took from ref 7.

J. Phys. Chem. B, Vol. 110, No. 45, 20082795

(3) Marshall, E. Getting the noise out of gene arrgysience2004

We found that these parameters also fit well the current data 306 630

on the HGU133 chipset, apart from a systematic small shift of
all the estimates of the absolute target concentrations.

(4) Tan, P. K.; Downey, T. J.; Spitznagel, E. L., Jr.; Xu, P.; Fu, D;
Dimitrov, D. S.; Lempicki, R. A.; Raaka, B. M.; Cam, M. C. Evaluation of
gene expression measurements from commercial microarray platforms.

There are several features that make the spike-in data of theNucleic Acids Res2003 31, 5676.

more recent HGU133 chip interesting. First of all the spike-in

set contains a larger number of sequences compared to the

(5) Brown, P. O.; Botstein, D. Exploring the new world of the genome
with DNA microarrays.Nature 1999 21, 33.
(6) Lipshutz, R. J.; Fodor, S. P. A.; Gingeras, T. R.; Lockhart, D. J.

HGU95 experiments (42 instead of 14), and the chip has beenHigh-density synthetic oligonucleotide arrayNiat. Genet.1999 21,

entirely redesigned. Second, the spike-in sequences contain somé&”:

of artificial origin, designed to avoid any cross-hybridization

(7) Carlon, E.; Heim, T. Thermodynamics of RNA/DNA hybridization
in high-density oligonucleotide microarray®2hysica A 2006 362

with human RNAs but prepared and labeled exactly as all other 433.

spikes. We find that these artificial sequences best fit the
hybridization model, as they show the best collapses when the

(8) Vainrub, A.; Pettitt, B. M. Coulomb blockage of hybridization in
two-dimensional array?hys. Re. E 2002 66, 041905.
(9) Held, G. A.; Grinstein, G.; Tu, Y. Modeling of DNA microarray

data are rescaled and plotted as a function of an appropriatedata by using physical properties of hybridizatiétoc. Natl. Acad. Sci.
thermodynamic variable. The good agreement suggests indeed’-S.A.2003 100, 7575.

that the simple model describes rather well the hybridization in
Affymetrix arrays and that the deviations observed for some

(10) Naef, F.; Magnasco, M. O. Solving the riddle of the bright
mismatches: Labeling and effective binding in oligonucleotide arrlygs.
Rev. E 2003 68, 011906.

human sequences are probably related to the nonoptimal design (11) Hagan, M. F.; Chakraborty, A. K. Hybridization dynamics of surface

of the sequences for a given probe.

immobilized DNA.J. Chem. Phys2004 120, 4958.
(12) Halperin, A.; Buhot, A.; Zhulina, E. B. Sensitivity, specificity, and

When compared to the human sequences of the HGU95 spikene hybridization isotherms of DNA chip&iophys. J.2004 86, 718.

in experiments analyzed in ref 7, we find that the artificial spikes
of the HGU133 set show definitely better collapses. However,

when comparing the human sequences of the HGU133 with

(13) Binder, H.; Preibisch, S. Specific and nonspecific hybridization of
oligonucleotide probes on microarray@iophys. J.2005 89, 337.

(14) Burden, C. J.; Pittelkow, Y.; Wilson, S. R. An adsorption model
of hybridization behaviour on oligonucleotide microarrayk. Phys.:

those in the HGU95 experiment, we find on average a better Condens. Matte2006 18, 5545.

collapse for the latter. Only few probes out of the 32 human

spikes of the HGU133 experiment have a better collapse than

those of the HGU95.

(15) Levicky, R.; Hogan, A. Physicochemical perspectives on DNA
microarray and biosensor technologieiends Biotechnol2005 23,
143.

(16) Halperin, A.; Buhot, A.; Zhulina, E. B. On the hybridization

Interestingly, the physics-based modeling developed hereisotherms of DNA microarrays: The Langmuir model and its extensions.

allows the assignment to each probe set of a quality score base

on the level of agreement with the Langmuir model. This

d- Phys.: Condens. Matte2006 18, S463.

(17) Binder, H.; Kirsten, T.; Hofacker, I. L.; Stadler, P. F.; Loeffer, M.
Interactions in oligonucleotide hybrid duplexes on microarraysPhys.

information may be used to reconsider and eventually redesignChem. B2004 108 18015.

the low-quality probe sets.

Finally, we have discussed the physical basis of hybridization
in solution and of RNA secondary structure formation. The latter
effect, according to the statistics over the spike-in probes, will
be relevant for approximately 10% of the probes only. The

sequences with the highest folding probabilities correspond to

(18) Carlon, E.; Heim, T.; Klein Wolterink, J.; Barkema, G. T. Comment
on: “Solving the riddle of the bright mismatches: Labeling and effective
binding in oligonucleotide arrays” by F. Naef and M. Magnageioys. Re.

E 2006 73, 063901.

(19) Naef, F.; Wijnen, H.; Magnasco, M. Reply to Comment on:
“Solving the riddle of the bright mismatches: Labeling and effective binding
in oligonucleotide arrays"Phys. Re. E 2006 73, 063902.

(20) Binder, H. Thermodynamics of competitive surface adsorption on

probes whose measured fluorescent intensities are well belowDNA microarrays.J. Phys.: Condens. Matte2006 18, S491.

those predicted from the Langmuir model.

According to our current understanding of the system (see

also refs 7 and 24), the hybridization in solution of partially

complementary RNA molecules has a strong influence. One of

the reasons for that is that RNA/RNA interaction parameters

(21) Sugimoto, N.; Nakano, S.; Katoh, M.; Matsumura, A.; Nakamuta,
H.; Ohmichi, T.; Yoneyama, M.; Sasaki, M. Thermodynamic parameters
to predict stability of RNA/DNA hybrid duplexe®iochemistryl995 34,
11211.

(22) Sugimoto, N.; Nakano, M.; Nakano, S. Thermodynamsgtsucture
relationship of single mismatches in RNA/DNA duplex&ochemistry
200Q 39, 11270.

are, at given temperature and salt concentration, stronger than (23) xia, T.; SantaLucia, J., Jr.; Burkard, M. E.; Kierzek, R.; Schroeder,

the DNA/DNA or RNA/DNA parameters. The simple ap-
proximation given in eq 2 captures the major features of the
hybridization in solution. However, an improvement over this
approach, as discussed above, remains an open challenge.
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