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We analyze publicly available data on Affymetrix microarray spike-in experiments on the human HGU133
chipset in which sequences are added in solution at known concentrations. The spike-in set contains sequences
of bacterial, human, and artificial origin. Our analysis is based on a recently introduced molecular-based
model (Carlon, E.; Heim, T.Physica A2006, 362, 433) that takes into account both probe-target hybridization
and target-target partial hybridization in solution. The hybridization free energies are obtained from the
nearest-neighbor model with experimentally determined parameters. The molecular-based model suggests a
rescaling that should result in a “collapse” of the data at different concentrations into a single universal
curve. We indeed find such a collapse, with the same parameters as obtained previously for the older HGU95
chip set. The quality of the collapse varies according to the probe set considered. Artificial sequences, chosen
by Affymetrix to be as different as possible from any other human genome sequence, generally show a much
better collapse and thus a better agreement with the model than all other sequences. This suggests that the
observed deviations from the predicted collapse are related to the choice of probes or have a biological origin
rather than being a problem with the proposed model.

1. Introduction

DNA microarrays (see, e.g., refs 1 and 2) allow the measure-
ment of the gene expression levels of thousands of genes
simultaneously. This is a major step forward compared to
traditional methods in molecular biology (such as Northern
blots) that are applicable only to a limited set of genes at a
time. The determination of gene expression levels is not the
only application of DNA microarrays, which have been used
also for the analysis of genetic variance between individuals
(single nucleotide polymorphisms), as efficient tools for DNA
sequencing, for the study of chromosomal defects, and for the
determination of alternative splicing events.

Despite the increasing popularity that microarrays have known
in the recent years there are still some problems with the
technology. There has been, for instance, only a moderate effort
in comparing different microarray platforms on the same
biological system.3 When this comparison was made, as in a
recent study on expression analysis of stressed pancreas cells,
it was found that different commercial platforms produced
wildly incompatible data.4 These problems call for a better
fundamental understanding of the functioning of the microarrays.
Such understanding will help researchers to design better
algorithms for microarray data analysis based on the physical
chemistry of the underlying hybridization process.

The basic mechanism underlying the functioning of DNA
microarrays is that of hybridization (i.e., the binding between
complementary single-stranded nucleic acids) between a strand
anchored at the surface and a strand in solution, referred to as
probe and target, respectively. Microarrays are produced in

different ways: The DNA anchored at the surface is either
deposited with a droplet5 (spotting techniques) or synthesized
in situ by photolitography as in the Affymetrix arrays.6 In spotted
arrays the deposited strands are not limited in length and
typically vary from 30 to a few hundred bases, while in
Affymetrix arrays the lengths of the surface strands are fixed
at 25 bases.

In a previous paper7 we have analyzed a series of publicly
available data of experiments performed on Affymetrix mi-
croarrays, using a simple model of the hybridization process.
In these experiments a set of selected genes are “spiked-in” at
fixed concentrations into a solution containing other types of
RNAs. This set of data has been widely used as a test ground
for algorithms designed to extract gene expression levels from
the raw data. Affymetrix is one of the major commercial
producers of microarrays. Although in Affymetrix arrays the
DNA anchored to the surface is limited to rather short oligos
(25 nucleotides long) one of the advantages is that a high density
of probe sequences per array can be obtained. In the latest
generation 1 400 000 different probes have been placed in a
single array. The large number of probes compensate for their
limited length. Indeed Affymetrix uses multiple probes per gene,
which define a so-calledprobe set: the number of probes per
probe set varies typically between 10 and 20. Another peculiar
feature of Affymetrix chips is that it uses as control a mismatch
(MM) probe sequence, which differs from a perfect-matching
(PM) sequence only at the base at position 13: A nucleotide A
is interchanged with T, and a nucleotide C is interchanged with
G.

In our previous work7 we focused on the spike-in data set of
the HGU95 human chipset, obtained with a background of RNA
from the human pancreas. More recently this has been substi-
tuted by the HGU133 chipset, where spike-in experiments are
carried out with a background of RNA from the HeLa (human
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adenocarcinoma) cell line. Probe sets have been completely
redesigned in the HGU133 chipset; moreover there are typically
only 11 probes per probe set compared to the 16 probes of the
HGU95 array. In this paper we focus on the analysis of publicly
available spike-in data on the HGU133 chip, building on our
previous work7 on HGU95. The first goal of this manuscript is
to test the robustness of the model introduced in ref 7 to a new
set of data.

The model of ref 7 features four fitting parameters: the
effective inverse temperatureâ′ and concentrationc̃, used in
the description of the hybridization in solution, and the effective
temperatureâ and saturation intensityA, used in the description
of the probe-target hybridization. The second goal of this paper
is to investigate the physicochemical basis for the observed
(fitted) values of these four fitting parameters. Third, we exploit
an interesting feature of the spike-in data of the HGU133
chipset: Different from the HGU95 data where spikes cor-
respond to human genes, the spikes in the HGU133 have been
selected between human, bacterial, and “artificial” sequences.
The latter were selected by Affymetrix to avoid cross-hybridiza-
tion with any known human coding sequence. We will compare
the quantitative agreement between spike-in data and the model
of ref 7, distinguishing these three types of sequences.

Several papers8-14 have been devoted to the modeling of
physicochemical aspects of DNA hybridization to surface
anchored strands using the Langmuir model, i.e., the basic model
for surface adsorption/hybridization, and its extensions. The
different approaches have been reviewed recently, for instance,
in refs 15 and 16. In principle several different effects may play
a role in the hybridization process. For instance, it has been
pointed out8,12 that electrostatic interactions between negatively
charged strands in solutions and a negatively charged layer of
DNA molecules may have the effect of impeding hybridization.
Other issues that have been discussed in the recent literature
include the effect of the surface on the hybridization dynamics,11

the length of DNA binding to the surface,16 factors influencing
the limiting behavior of the hybridization at strong target
concentrations,14 and the role of marker molecules (as the biotin
linker) on the hybridization affinity.10,17-19 All these effects will
most likely play a role in microarray experiments as well.
However, since we could not incorporate these effects into our
model without introducing new fitting parameters, we decided
to use the basic model of ref 7.

2. A Simple Model for Hybridization in Affymetrix
Arrays

In this section we briefly recall the model introduced in ref
7. Two basic processes are considered: (1) target-probe
hybridization and (2) target-target hybridization in solution.
According to the model the fluorescence signal measured from
a given probe is

where I0 indicates a background level due to nonspecific
hybridization,A sets the scale of the intensities,c is the target
concentration (a measure of the gene expression level),∆G is
the target-probe hybridization free energy,â ) 1/RT is the
inverse temperature, andR is the universal gas constant. Here,
R models the reduction in the concentration of available targets
due to the target-target hybridization in solution: Only a
fractionRc is available for the hybridization with probes as the

remaining (1- R)c form stable duplexes with other partners in
solution (Figure 1a).

Many different scenarios of hybridization in solution have
been discussed by other authors.16,20 In the model introduced
in ref 7, we approximate the target-target hybridization with
the expression

with â′ and c̃ fit parameters and∆GR
(37) ≡ ∆GR(1, 25), the

(sequence-dependent) RNA/RNA free energy for duplex forma-
tion in solution at 37° C calculated over the whole 25-mer
length; in close approximation, the binding free energies at 37
and 45°C (the actual experimental temperature) are almost
identical, apart from a small scaling factor, which is adsorbed
into the rescaled temperatureâ′. In the next section, we will
discuss the steps leading to eq 2 in more detail.

In the model defined in eqs 1 and 2 the hybridization free
energies∆G and ∆GR are calculated from tabulated experi-
mental data for DNA/RNA21,22and RNA/RNA23 duplex forma-
tion in solution. The four parametersA, â, â′, andc̃ were fitted
against the spike-in data of the Affymetrix array HGU95a in
ref 7. The parametersâ′, c̃, andA will be discussed in sections
3 and 4. The parameterâ is the inverse temperature. Instead of
fixing it to the experimental value we have kept it as a fitting
parameter as explained in ref 7. The best fit yields a valueT ≈
700 K, which is twice as large as the true experimental
temperatureT ) 45 °C. This suggests that the actual free
energies involved in the chip hybridization are roughly 50%
lower than the∆G estimated from the experimental data in
solution. The possible origin of this discrepancy has been
discussed in ref 7. It has also been recently suggested that the
origin of this difference may be due to the presence of a
denaturant, dimethyl sulfoxide (DMSO), used in Affymetrix
experiments.16 It is likely that many other effects may play a
role such as polydispersity in probe lengths, molecular crowding,
partial target-probe hybridization, etc. In a recent work24 we
included part of these effects and found indeed a reduction of
the effective temperature toT ≈ 500 K, still somewhat higher
than the true experimental value but significantly closer to it.
This more refined model however does not substantially improve
the fit to the experimental data; we therefore restricted ourselves
to the original model introduced in ref 7, with the same set of
fitting parameters.

I ) I0 + ARc eâ∆G

1 + Rc eâ∆G
(1)

Figure 1. (a) Simple model of hybridization in Affymetrix microarrays
used throughout this paper. It is defined by two basic reactions: (1)
hybridization between target molecules (t) to surface anchored probes
(p) leading to a duplexpt and (2) hybridization between target molecules
in solution leading to the partial duplexestt̂i,j. In the model, the effect
of the hybridization in solution amounts to a reduction of the original
target concentrationc to a valueRc. (b) Partial hybridization of a
fragment in solution complementary to the target RNA sequence from
basei to basej (1 e i < j e 25).

R ≈ 1

1 + c̃ exp(â′∆GR
(37))

(2)
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We note that we fit mismatches and perfect matches with
the same model. The difference between the two is that there is
a different hybridization free energy∆G: One expects a lower
signal for mismatches compared to those of perfect matches,
due to weaker binding. This is not always the case; as remarked
in several studies for a substantial fraction of probes (30%, as
reported in ref 10) one observes “bright mismatches” for which
the mismatch intensityIMM exceeds the intensityIPM of the
perfect match. However, it has been observed13 that bright MM
come predominantly from probes with low intensities, which
suggests that bright mismatches are associated with weak
specific hybridization when the signalI is dominated byI0 in
eq 1.

In recent work24 we also compared the current model with
the approach based on position-dependent effective affinities
as, for instance, described in refs 10 and 13. The conclusion is
that the two approaches are fully consistent with each other,
provided that various effects are incorporated such as partial
unzipping of the probe-target complex, less than 100%
efficiency in the probe growth during lithography, and entropic
repulsion between the target and the substrate. These additional
effects are the main factors causing position dependence (and
thus allowing for a comparison with position-dependent effective
affinities); for a quantitative prediction of the intensities, their
combined effect can be well approximated by a slight decrease
of â in eq 1, and they are therefore not included in the current
study.

3. Hybridization in Solution

We now discuss the approximations leading to the form of
R. We denote the concentration of free 25-mer targets in solution
as [t], the concentration of free target strands that are comple-
mentary from nucleotidei up and including nucleotidej as [t̂i,j],
and the concentration of duplexes between these two as [tt̂i,j].
Chemical equilibrium (Figure 1b) yields for the equilibrium
constant

where∆GR(i,j) is the RNA/RNA hybridization free energy for
target molecules in solution, which are complementary from
nucleotide i up to and includingj, and â ) 1.59 mol/kcal
(corresponding to the experimental temperature of 45°C). For
a given gene, the measure of the gene expression level that one
wants to determine is the total target concentrationc given by

Solving eqs 4 and 3 we find for the fraction of single-stranded
target in solution

Note that the summation in the denominator of eq 5 was
replaced in the approximate expression eq 2 by the single term
c̃ exp(â′∆GR

(37)), with fitting parametersc̃ andâ′.
Equation 5 requires as input estimates of the concentration

[ t̂i,j] of complementary sequences with lengthsl ) j - i + 1
present in solution. Assuming that all four nucleotides are
roughly equally abundant and that there are no correlations along

the sequence, the abundance of short sequences with lengthl
will decrease as [t̂i,j] ≈ 4-l. This scaling breaks down beyond
some lengthL; assuming for the human transscriptome a total
length of 107 nucleotides, a random sequence longer than 12 is
more likely not present at all, since 412 > 107. We therefore
take as our approximation

Here, c0 is a measure of the RNA concentration. Using this
approximation for the concentration of complementary strands,
we can now compare eqs 2 and 5. Figure 2 shows the more
elaborate model eq 5 as a function of the approximate form eq
2, with the values for the fitting parametersâ′ andc̃ taken from
ref 7. There is a reasonable agreement between the two.

Since eq 5 has a better microscopic foundation than eq 2, it
should in principle allow for a better estimate of the hybridiza-
tion in solution. There are however severe limitations to the
use of eq 5. In the hybridization in solution, there is a
competition between the contributions of short sequences, which
are abundant but have a low affinity, and long sequences, for
which the concentration is low but the affinity is high. The
concentration drops on average approximately by a factor of 4
per added length (eq 6), but the affinity grows by approximately
〈∆G〉 ≈ 2 or 3 kcal/mol, the average value of RNA/RNA
interaction parameters.25 Since exp(â〈∆G〉) > 4, the longer
sequences dominate the hybridization in solution. However, as
discussed above, beyond lengthL ≈ 12, there simply are no
complementary strands. The accuracy of the more elaborate
model eq 5 thus hinges crucially on knowing the longest
complementary strand that is transcribed as well as its affinity
and its concentration. Since the approximate model eq 2 is not
expected to perform worse than the more elaborate model eq
5, we keep using the former.

The data points in Figure 2 can be fitted by a straight line
with slope 1: The value ofâ′ ) 0.67 mol/kcal in ref 7,
corresponding to 725 K, apparently is the appropriate value to
describe the experiments at a temperature of 45°C. The offset
in the straight-line fit is equal to log(c̃) - log(c0). Since the
straight-line fit has an offset of-14.1 and since we used the
fitted value of c̃ ) 2 × 10-2 pM in ref 7, an estimate of the
RNA concentration isc0 ) c̃ exp(14.1)) 30 nM. Even if we
do not use the more elaborate model eq 5, it provides us with

Ki,j )
[t][ t̂ i,j]

[tt̂i,j]
) e-â∆GR(i,j) (3)

c ) [t] + ∑
i,j

[tt̂i,j] (4)

Rf )
[t]

c
)

1

1 + ∑
i,j

[ t̂ i,j] exp(â∆GR(i,j))

(5)

Figure 2. Comparison of the summation in eq 5, equal toRf
-1 - 1,

and its approximation in eq 2, equal toR-1 - 1, for the first 1000
spike-in sequences of HGU133. Note that a change inc0 corresponds
to a vertical shift over log(c0); in this figure, we usedc0 ) 1. The
straight line is a fit given byy ) x + b with b ) -14.1.

[ t̂ i,j] ) {c0‚4
-(j-i) for j - i < 12
0 otherwise

(6)
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a microscopic basis for the values of the parametersâ′ andc̃ in
the approximate model eq 2.

4. Signal Saturation Level

If the target concentrationc and the binding energy∆G are
sufficiently high, then the Langmuir isotherm saturates to a
maximal value. From eq 1 we find forc exp(â∆G) . 1

where we have used the fact that typically the background level,
I0, is much lower than the value ofA. The saturation intensity
increases if targets are bound to almost all probes. Since the
number of probes does not vary between the sequences being
measured, this saturation intensity is also expected to be
sequence-independent and, more specifically, should not dis-
tinguish between perfect matches and mismatches. A recent
analysis of the Latin square set9,14 reported widely different
values for the saturation intensity. It is worth clarifying further
this issue here.

The obvious procedure to determine the saturation intensity
is to look at the intensity of a probe as a function of
concentration. Assuming an effective affinityKs for probe
sequences, the intensityIs(c) as a function of concentrationc
is given by

in which I0,s is the (sequence-dependent) background intensity
due to nonspecific binding. A plot ofIs versusc for two probes
of the HGU133 spike-in set is shown in Figure 3. TakingI0, A,
andK in eq 8 as fitting parameters and extrapolating to high
concentration then yield the saturation intensity.

Two research groups9,14 followed this procedure, and both
found saturation intensities that vary wildly between different
sequences. A first effect that can cause deviations from the
Langmuir fit in eq 8 is that the lithographic process, through
which the probes are synthesized in situ in Affymetrix chips, is
not 100% efficient. As estimated by Forman et al.,26 only
approximately 10% of the probes reach the full length of 25
nucleotides. At low intensities far from saturation, the incom-
plete probes can be safely ignored since their affinity is much
lower than that of the fully grown probes. However, under
conditions where the fully grown probes are saturated, clearly
there will be contributions to the fluorescent intensity from the

almost complete probes, and an even further increase in
concentration will bring into play shorter and shorter incomplete
probes. Consequently, the Langmuir fit in eq 8 breaks down
near saturation; extrapolation to high concentration is an
unreliable procedure.

A second cause of worry is that comparing fluorescent
intensities from different chips is also potentially unreliable,
since the microarrays might have undergone slightly different
processing during the washing and staining. Since Affymetrix
microarrays cannot be reused, the spike-in measurements used
in refs 9 and 14 required a new chip for each concentration.

To avoid these two potential sources of error, we therefore
consider the intensities for a given probe set at a specific
concentration, i.e., constantc and variables∆G andR in eq 1.
The data belong to the same array. An example of this type of
analysis is shown in Figure 4 for a concentration ofc ) 512
pM. On the horizontal axis we plot∆G* ) ∆G - RT log R.
The solid lines are given by the Langmuir curve in eq 1. Note
that a large majority of the probes align along the expected
curve, with a few exceptions as, for instance, for probe 11 (both
PM and MM) for the probe set 204414_at. Therefore, the data
are consistent with a value ofA roughly constant in eq 1, which
suggests indeed that the large variations inImax obtained from
the extrapolations of the data in the earlier analysis are more
likely to be an artifact of the extrapolations. Note however that
some variability of the saturation level can be seen in the data
of Figure 4. Typically this variability is approximately 20%.
To keep our model simple we will keepA constant in the rest
of the paper. An interesting possible explanation of the
variability of A has been given in ref 14, i.e., that this variation
is due to the posthybridization washing of the array.

Yet another different way of addressing the issue of the
saturation intensities is to analyze the histogram of the intensities
on the whole chip, as in Figure 5, which shows both the
intensities for the HGU95 and HGU133 spike-in data. To reveal
the data at high intensities, they are plotted in a log-log scale.
In the figure we note a decrease in the histogram aroundI ≈
10 000, sharper in the HGU133 chipset, which is consistent with
the estimate of the saturation intensity obtained from the fits of
intensities versus∆G - RT log R, as given in Figure 4. Note

Figure 3. Plot of intensity vs concentration for three spike-in genes
of the HGU133 chipset.Imax indicates the saturation value obtained
from a nonlinear fit with three parameters (I0, A, andK), based on eq
8.

Imax ) I0 + A ≈ A (7)

Is(c) ) I0,s +
AscKs

1 + cKs
(8)

Figure 4. Plot of I - I0 as a function of∆G - RT log R for four
sequences spiked-in at a concentration ofc ) 512 pM. The numbers
indicate the probe set numbers. Smaller characters are used for the MM
signals. Solid lines represent the Langmuir model as given by eq 2.
The data are consistent, except a few outliers, with the Langmuir model
with a roughly constant saturation levelA ≈ 104.
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that in Figure 5b the decrease is 100-fold in the range 10 000
< I < 15 000, which suggests that the data are consistent with
a roughly constant value of the saturation. However, a closer
inspection of the histogram of the HGU133 for PM and MM
intensities separately reveals that the estimated saturation values
for the two may be different. In the case of PM intensities alone
the drop is rather sharp atI ≈ 10 000; however the MM
intensities seem to saturate at lower intensities, a feature that is
not seen in the HGU95 data (Figure 5a). The number of MM
probes reaching an intensity close to the saturation level in the
histogram of Figure 5b is quite small, so the fact that the MM
and PM reach a different saturation level cannot be concluded
for sure.

Also the low-intensity side of the histograms in Figure 5
contains interesting information. For both the HGU95 and the
HGU133, the intensity drops steeply below a minimal intensity.
For HGU95, this drop occurs atImin ≈ 70, while for HGU133
the drop occurs atImin ≈ 30. This increase of the dynamic
intensity range by more than a factor of 2 is a clear demonstra-
tion of the fast rate of improvement in microarray technology.

5. Analysis of Data Collapses

As a test of the validity of the model we plotted7 the data as
a function of the rescaled variable

If the model is to be trusted, then the data for different values
of c and different probe sequences (i.e., different∆G and R)
ought to “collapse” onto a single master curve

This collapse has indeed been observed in the large majority
of the spike-in genes of the HGU95a chipset.7 Interestingly,
the very few outliers observed in that case could be explained
as annotation errors or unbalance of free energies used for
specific nucleotides, as discussed in ref 7.

We choose here the same fitting parameters used in ref 7 for
the HGU95 chipset, that is:A ) 10 000,â ) 0.74 mol/kcal,â′
) 0.67 mol/kcal, andc̃ ) 10-2 pM. These parameters fit equally
well the HGU133 spike-in data.

In Figures 6-8 we show the collapse plots for all 42 genes
of the spike-in data set HGU133. Each plot contains ap-
proximately 200 points, which all tend to cluster along the
Langmuir curveAx′/(1 + x′) (in some cases much better than
others). All 13 concentrations, which range from 0.125 to 512
pM in the spike-in experiment, are shown. The intensities
measured atc ) 0 are taken as estimates of the background
level I0 in eq 10. In the collapse plots, only the MM sequences
for which ∆G could be estimated are shown, as the mismatch
free energies in RNA/DNA duplexes are known only for a
limited set of mismatches.22 (We could associate a free energy
to approximately 30% of the mismatches, as discussed in ref
7.)

The HGU133 spike-in set contains 4 bacterial sequences and
8 artificial sequences (Figure 6) and 30 human sequences
(Figures 7 and 8). A perfect agreement with the Langmuir theory
would imply that all data align along the curve given by eq 10,
which is shown as a solid line in Figures 6-8. In general the
agreement is best for the artificial sequences. Occasionally, also
some human sequences collapse well into a single curve in good
agreement with the Langmuir model, but in general their
behavior is worse than that of the artificial ones. To quantify
the data dispersion we introduce the variable

whereI is the measured intensity andIth is the theoretical value
as predicted from the Langmuir isotherm (eq 10) forx′
corresponding to the measuredI. For the definition ofw in eq
11 we have kept only the values ofI in the range 100< I <
10000. We determine its average〈w〉 and standard deviation
σw. If the data are well-centered around the expected behavior,
then one has〈w〉 ) 0, while σw is a measure of the spread in
the data.

The values of〈w〉 and σw for the bacterial, artificial, and
human sequences are given in Tables 1 and 2, respectively. We
note thatσw is on average the lowest for the artificial sequences
with a typical value ofσw ≈ 1. Only for two human probe sets
(205790_at and 207540_s_at withσw ≈ 0.7) the collapse is
better than that of the artificial sequences. For three human probe
sets (204205_at, 207641_at, and 212827_at) the collapse is very
poor as indicated by aσw > 2. The collapses in the four bacterial
sequences have a somewhat higher dispersion compared to the
human sequences.

A very interesting feature of the whole analysis is that the
quality of the collapses is much better for artificial sequences

Figure 5. Histograms of the PM and MM intensities for the Latin
square experiments in log-log scale for the chips (a) HGU95a and (b)
HGU133. The plots contain (a) 19 and (b) 12 histograms, referring to
different experiments. The dashed lines are positioned atI ) 10 000
andI ) 15 000. (Intensities are given on the Affymetrix scale.) Insets:
Histograms of the total intensity of PM and MM together.

x′ ) Rc eâ∆G (9)

I - I0 ) Ax′
1 + x′ (10)

w ) log( I
Ith

) (11)
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than for any other sequence. Artificial sequences have been
chosen by Affymetrix to be as different as possible from any
human RNA, to minimize the effects of cross-hybridization.
Their preparation, as far as labeling and target fragmentation
are concerned, is the same as that for all other spikes.27 As in
all collapses the same set of parameters is used. Therefore the
high σw for some probe sets is very likely an indication that the
selected probes are not yet optimal. Possible deviations from
the theory are due to cross-hybridization.

6. Determination of the Expression Level

The model defined by eqs 1 and 2, once all parameters have
been fixed, can be used to fit the concentrationc starting from
the measured intensities. The target concentration in solution
is a measurement of the gene expression level, and it is the
quantity one wants to compute from the raw microarray data.
As the concentrations in the spike-in experiments are known,
we can compare the known values with the fitted ones. Figure

9 shows a plot of fitted concentration versus spike-in concentra-
tion for the artificial sequences. We limit ourselves here to show
the data for these sequences, but the trend is quite general and
valid for other genes as well. The solid line in Figure 9
corresponds to a liney ) x, which means perfect agreement
between spike-in and fitted values. The two other lines cor-
respond toy ) 2x andy ) x/2, drawn as guides to the eye.

As shown in Figure 9, most of the data fall in the range
between the two lines, except for the spikes TagA and TagF,
which give a much lower fitted concentration. All the points
follow approximately straight lines with slope 1, except for the
highest spike-in concentrations, corresponding to 256 and 512
pM. This is due to the fact that at high concentrations many
probes are very close to saturation.

We note also that the fitted concentrations are all systemati-
cally lower than the spike-in values, as most of the concentra-
tions fall in the interval [cspike-in/2, cspike-in]. This is a conse-
quence of our choice to use the fitting parameters from a

Figure 6. Collapse plots for the four bacterial and the eight artificial sequences of the HGU133 spike-in set. In these plots the background-
subtracted intensities for a given probe set are plotted as functions of the rescaled variablex′ given in eq 9. The data correspond to all spike-in
concentrations for a given probe sets. Solid lines correspond to the Langmuir isotherm. In comparison with the human and bacterial sequences the
artificial sequences are characterized by the best collapses.
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previous study7 of spike-in experiments on HGU95. We have
chosen not to refit these parameters here again for HGU133 to
illustrate their universal validity. The slight underestimation of
the absolute concentration is not a problem, since in gene
expression measurements one is only interested in fold variations
of expression levels between different experimental conditions.
The fact that the data of Figure 9 follow lines with a slope of
approximately 1 guarantees that the fold change in concentration
in different experiments is correctly estimated.

7. One Cause of Outliers: Target Secondary Structures

It is well-known that single-stranded nucleic acids, particularly
RNA, tend to form stable folded conformations by binding of
complementary bases. Currently, algorithms that calculate RNA
secondary structures are to be trusted for sufficiently short
molecules, say less than 50 nucleotides, which is the situation
for Affymetrix microarrays, where RNA targets are fragmented
before hybridization. The average target length is 50 nucleotides,
but probably only shorter fragments contribute to hybridization.

Figure 7. Collapse plots for human sequences of the HGU133 spike-in set (part 1). The probes that are complementary to targets with the largest
folding free energies are emphasized (Table 3). They correspond to probes 204430_s_at10 and 204513_s_at4.

22792 J. Phys. Chem. B, Vol. 110, No. 45, 2006 Heim et al.



We used the Vienna package28 for the calculation of folded
RNA structures that may form in solution and impede hybrid-
ization. We considered first 25-mer targets in solution exactly
complementary to the probes of the HGU133 spike-in data set.
Table 3 shows a list of probes in this set, whose complementary
target has the lowest folding free energy, i.e., that of the most
stable conformation, calculated at the experimental temperature
of 45 °C. Given a folding free energy∆Gfold, one can use the

Figure 8. Collapse plots for human sequences of the HGU133 spike-in set (part 2). The probes that are complementary to targets with the largest

folding free energies are emphasized (Table 3). They correspond to probes 207641_at5 and 209354_at8.

TABLE 1: List of Values of 〈w〉 and σw for the Bacterial
and the Artificial Sequences in the Spike-In Set HGU133.

probe set 〈w〉 σw probe set 〈w〉 σw

AFFX-DapX-3_at 0.08 1.49 AFFX-PheX-3_at 0.16 1.55
AFFX-LysX-3_at 0.89 2.46 AFFX-ThrX-3_at 0.22 1.59
AFFX-r2-TagA_at -1.05 0.97 AFFX-r2-TagE_at-0.32 0.82
AFFX-r2-TagB_at -0.51 0.83 AFFX-r2-TagF_at-0.46 1.09
AFFX-r2-TagC_at 0.43 1.08 AFFX-r2-TagG_at-0.11 0.90
AFFX-r2-TagD_at -0.03 0.90 AFFX-r2-TagH_at 0.11 1.22
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two-state model approximation to findpfold, the probability that
the sequence is folded into the most stable conformation

where we useT ) 45° C. According to this expression for a
folding free energy∆Gfold ) -8 kcal/mol, one finds 1- pfold

≈ 4 × 10-6, and for∆Gfold ) - 6 kcal/mol one finds 1- pfold

≈ 10-4. The large majority of the targets complementary to
the probes listed in Table 3 are thus folded and not expected to
participate to hybridization.

Figure 10 shows the folding configurations for the four targets
with the lowest free energies in Table 3. As shown in Figures
7 and 8 the corresponding probes have a signal that is a few
orders of magnitude lower than that expected from the Langmuir
model, although not as low as that derived from eq 12, using
the ∆Gfold listed in Table 3. For instance, from the measured
signals we find an intensity lower by a factor 103 for the probe
204513_s_at4 instead of a factor 106 as deduced from eq 12.
This difference could have several origins. First, the hybridiza-
tion in solution described by the termR in eq 2 may already
take into account some secondary structure formation. Second,
the RNA in solution is present with sequences of all lengths.
The free energies listed in Table 3 refer to 25-mers, so shorter
sequences will have a lower folding probability than that
deduced from eq 12 on the basis of the free energies of 25-
mers. Third, even if some secondary structure is present,
hybridization with the surface-bound probes is still possible if
the folded configuration has some dangling ends from which
binding can initiate.

We have analyzed the folding free energies of 25-mers
complementary to all of the probes in the HGU spike-in set.
We found that approximately 50% of the targets have a folding
free energy lower than 1 kcal/mol, so secondary structure
formation can be neglected safely. Approximately 10% of the
targets have a folding free energy higher than 4 kcal/mol, so
for this fraction the secondary structure formation may interfere
with the target-probe hybridization.

The correct estimate of the folding probability involves a
complex calculation over fragments of all lengths, possibly
including sequences neighboring the 25-mer part complementary
to the probe. However the folding is expected to have a relevant
effect for at most 10% of the probes. A possible way out is that
of excluding from the analysis of the gene expression levels
those probes whose 25-mers folding free energy is above a
certain threshold.

8. Conclusion

In this paper we have extended a previous study7 of
Affymetrix spike-in experiments on the chip HGU95 to a novel
HGU133 chipset. We used the model introduced in ref 7 that
takes into account both target-probe and target-target hybrid-
ization in solution. The hybridization free energies are calculated
from the nearest-neighbor model25 using the experimental
parameters for RNA/DNA21,22and RNA/RNA.23 There are four

TABLE 2: List of Values of 〈w〉 and σw for the Human
Sequences in the Spike-In Set HGU133.

probe set 〈w〉 σw probe set 〈w〉 σw

200665_s_at 0.54 1.26 205569_at -0.28 1.12
203471_s_at 0.39 1.43 205692_s_at 0.24 1.27
203508_at 0.45 1.83 205790_at -0.78 0.76
204205_at 0.86 2.11 206060_s_at 0.52 1.66
204417_at -0.24 1.18 207160_at -0.32 1.06
204430_s_at -0.48 1.13 207540_s_at -0.29 0.62
204513_s_at -0.68 1.16 207641_at 0.24 2.72
204563_at -0.57 1.44 207655_s_at 0.76 1.06
204836_at -0.04 1.41 207777_s_at -0.14 1.11
204912_at -0.31 1.35 207968_s_at -0.85 1.66
204951_at -0.15 1.48 209354_at 0.04 1.41
204959_at 1.33 1.62 209606_at 0.77 1.44
205267_at 0.36 1.23 209734_at -0.20 1.51
205291_at -0.44 1.24 209795_at 0.63 1.71
205398_s_at -0.15 1.37 212827_at 0.61 2.53

TABLE 3: Minimal Folding Free Energies for the Targets
(Assumed to be 25-mers) Complementary to the Probes
Forming the Spike-In HGU133 Data Seta

probe set
probe

number
-∆Gfold

(kcal/mol)

204513_s_at 4 8.70
207641_at 5 8.16
204430_s_at 10 7.79
209354_at 8 7.67
207540_s_at 10 7.45
AFFX-r2-TagA_at 1 6.52
205398_s_at 1 6.43
AFFX-PheX-3_at 10 6.18
204836_at 10 6.17
203508_at 2 6.10
206060_s_at 3 6.05

a These free energies were calculated with the program RNAfold.

pfold ) e-∆Gfold/RT

1 + e- ∆Gfold/RT
(12)

Figure 9. Plot of the fitted target concentration as a function of the
spike-in concentration for the artificial sequences. The solid line
corresponds to the diagonaly ) x, while the two dotted lines arey )
x/2 andy ) 2x and are drawn as guides to the eye. We note a systematic
shift of the estimated absolute concentration compared to that of the
spike-in one, although the fold variations of the concentrations are
correctly estimated as the majority of the data follow lines parallel to
the diagonal in the plot.

Figure 10. Folding configurations for the four targets with the
lowest free energy, from left to right: 204513_s_at4, 207641_at5,
204430_s_at10, and 209354_at8.
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global fitting parameters in the model that we took from ref 7.
We found that these parameters also fit well the current data
on the HGU133 chipset, apart from a systematic small shift of
all the estimates of the absolute target concentrations.

There are several features that make the spike-in data of the
more recent HGU133 chip interesting. First of all the spike-in
set contains a larger number of sequences compared to the
HGU95 experiments (42 instead of 14), and the chip has been
entirely redesigned. Second, the spike-in sequences contain some
of artificial origin, designed to avoid any cross-hybridization
with human RNAs but prepared and labeled exactly as all other
spikes. We find that these artificial sequences best fit the
hybridization model, as they show the best collapses when the
data are rescaled and plotted as a function of an appropriate
thermodynamic variable. The good agreement suggests indeed
that the simple model describes rather well the hybridization in
Affymetrix arrays and that the deviations observed for some
human sequences are probably related to the nonoptimal design
of the sequences for a given probe.

When compared to the human sequences of the HGU95 spike-
in experiments analyzed in ref 7, we find that the artificial spikes
of the HGU133 set show definitely better collapses. However,
when comparing the human sequences of the HGU133 with
those in the HGU95 experiment, we find on average a better
collapse for the latter. Only few probes out of the 32 human
spikes of the HGU133 experiment have a better collapse than
those of the HGU95.

Interestingly, the physics-based modeling developed here
allows the assignment to each probe set of a quality score based
on the level of agreement with the Langmuir model. This
information may be used to reconsider and eventually redesign
the low-quality probe sets.

Finally, we have discussed the physical basis of hybridization
in solution and of RNA secondary structure formation. The latter
effect, according to the statistics over the spike-in probes, will
be relevant for approximately 10% of the probes only. The
sequences with the highest folding probabilities correspond to
probes whose measured fluorescent intensities are well below
those predicted from the Langmuir model.

According to our current understanding of the system (see
also refs 7 and 24), the hybridization in solution of partially
complementary RNA molecules has a strong influence. One of
the reasons for that is that RNA/RNA interaction parameters
are, at given temperature and salt concentration, stronger than
the DNA/DNA or RNA/DNA parameters. The simple ap-
proximation given in eq 2 captures the major features of the
hybridization in solution. However, an improvement over this
approach, as discussed above, remains an open challenge.
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