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Atomic Force Microscopy of Polymer Brushes: Colloidal versus Sharp Tips
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Force versus distance profiles acquired by atomic force microscopy probe the structure and interactions of polymer
brushes. An interpretation utilizing the Derjaguin approximation and assuming local compression of the brush is
justified when colloidal probes are utilized. The assumptions underlying this approach are not satisfied for sharp tips,
and deviations from this model were reported for experiments and simulations. The sharp-tip force law proposed
assumes that the free energy penalty of insertion into the brush is due to the osmotic pressure of the unperturbed brush.
This static force law is in semiquantitative agreement with the simulation results ofMurat andGrest (Murat, M.; Grest,
G. S. Macromolecules 1996, 29, 8282).

I. Introduction

Force versus distance profiles obtained via atomic force micro-
scopy (AFM) probe the structure and interactions of polymer
brushes1-11 and of physically adsorbed polymer layers.12-14 The
AFM force curves can be acquired with colloidal probes8-11 or
sharp tips.1-7 Colloidal probes comprise microspheres, with a
radius in the range of 1-30 μm, glued to the cantilever.15 The
sharp tips are typically pyramidal, and their radii of curvature at
the apex vary in the range of 2-60 nmwith half-cone angles from
about 35� to 10�.15,16 This last category also includes cylindrical
carbon nanotube (CNT) tips, having diameters of 1-3 nm for
single-walled CNTs (SWNTs).17,18 The fitting and interpretation
of the force profiles often invoke thermodynamic force laws.2,5-11

These convert the compression force law of a brush confined by a
planar boundary to the tip’s geometry via the Derjaguin approxi-
mation:15 the force acting on a tip with a rotational symmetry is
obtained by summing the contributions of circular, locally flat

strips of altitude z assuming that each strip experiences the
pressure exerted by a brush compressed by a planar surface at
height z. This approximation is justified when the probe-surface
separation and the brush height are small in comparison to the
probe’s radius of curvature. The equilibrium height of a brush,
Hbrush, is typically of order of 10

2 nm. Accordingly, the Derjaguin
approximation utilizing the planar force law is reasonable for
colloidal probes but questionable for sharp tips. This general
observation is supplemented by experimental and simulation
results. The experimental results1-4 suggest that the sharp-tip
force laws are shallower than the ones obtained by the surface
force apparatus (SFA) where the Derjaguin approximation
involving compression is certainly applicable. This effect was
attributed to splaying of the polymer chain configurations so as to
accommodate a sharp impenetrable tip.1,19 The experimental
observations and their interpretation were also confirmed by
computer simulations.19,20 At present, there is no theoretical
expression for the sharp-tip force laws as obtained for swollen
brushes using molecular dynamics19 and Monte Carlo simu-
lations.20 Theoretical studies considered molten brushes21,22 and
swollen brushes probed by wide-based cylindrical tips.23 Accord-
ingly, the Derjaguin approximation assuming compression of the
brush is utilized to describe sharp tip force profiles because of the
current lack of an alternative approach.2,5-7 In the following, we
propose a phenomenological theory of the interactions between
sharp tips and polymer brushes yielding simple analytical expres-
sions for the thermodynamic sharp-tip force law. It estimates the
free energy penalty associated with the insertion of a sharp AFM
tip into the brush by the work expended against the osmotic
pressure of the unperturbed brush. The Derjaguin approximation
is not utilized.Within this view, the insertion of the sharp tip does
not give rise to compression of the brush. Rather, it produces a
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short ranged perturbation of the brush concentration profile in
the vicinity of the tip, as suggested by the simulation results.19,24

This view is analogous to the model invoked for the insertion of
small globular proteins into the brush.25-27 As we shall see, the
force law thus obtained is in semiquantitative agreement with the
simulation results. While our discussion focuses on polymer
brushes, the approach can be used to describe the interactions
between sharp tips and layers of adsorbed homopolymers,
swollen gels, and so on. For simplicity, we limit the analysis to
nonadsorbing tips having rotational symmetry and to swollen
brushes exhibiting mean field (MF) behavior, that is, marginal
good solvents andΘ solvents. To explore the role of tip geometry
we compare the force laws of cylindrical, paraboloid, and conical
tips. For comparison purposes, we also discuss the corresponding
force laws as obtained upon assuming local confinement and
invoking the Derjaguin approximation. We emphasize that the
thermodynamic force laws are obtained assuming a stationary tip
immersed in an equilibrated brush. Accordingly, they apply when
the brush relaxation is fast in comparison with the motion of the
tip. We shall return to this issue in the Discussion.

Overall, it is helpful to distinguish two extreme scenarios of the
approach of AFM tip toward a polymer brush (Figure 1). In the
compressive limit, realized by colloidal probes, the brush is locally
confined. This gives rise to amodified concentrationprofile with a
higher monomer density. Within this scenario, the force profile
reflects, as we shall discuss, the local osmotic pressure of the
compressedbrush at the boundaryof the tip. In the insertion limit,
as realized by sharp tips, the overall brush structure is onlyweakly
modified and the force profile reflects the osmotic pressure in the
unperturbed brush. Clearly, both views are approximations of
interest because they yield analytical expressions allowing to fit
and interpret experimental and simulation data. With this caveat
in mind, it is of interest to note two features that distinguish the
insertion and compressivemodes: (i) The compressivemode force
laws diverge for deep insertions because of the densification
of the brush by the tip. In contrast, the force associated with
the insertion limit does not diverge because the osmotic pressure
of the unperturbed brush is always finite. (ii) The insertion mode
clearly distinguishes between brushes modeled by steplike con-
centration profiles and brushes having a parabolic concentration
profile. In contrast, the compressive force law can be fitted by the
two brush models.28

The remainder of the paper is organized as follows. General
features of the insertionmode force laware described in section II.
It specifies the expressions for calculating the insertion free energy
and the corresponding force law as well as their compressive
mode counterparts. The underlying approximations and their
range of applicability are also described. Certain aspects of the
detailed discussion concerning the compressive force law within
the self-consistent field (SCF) theory and the insertive case in the
Alexandermodel are delegated toAppendix I and II, respectively.
The insertion mode force laws for cylindrical, paraboloid and
conical tips, as obtained for marginal and Θ solvents, are des-
cribed in section III. For comparison purposes we present,
in section IV, the force laws obtained for identical tips in the
compressive limit, upon utilizing the Derjaguin approximation.
The applicability of the static sharp-tip force laws, as determined
by the tip’s form and approach velocity, is briefly discussed in the
Discussion. Technical aspects of sections II and IV are discussed
in Appendix III.

II. The Insertion Penalty: General Considerations

The main thrust of this work concerns explicit force profiles of
insertingAFMsharp tips into polymer brushes. In this section,we
first describe the approach and then discuss the underlying
physics, the regime of applicability, and the approximations
involved. To obtain explicit force laws, we consider brushes
exhibiting MF behavior. In other words, the chains exhibit
Gaussian elasticity and the free energy density of monomer-
monomer interactions, kTfinter is given by the virial expansion
finter= τa3c2þwa6c3þ ...= (τφ2þwφ3þ ...)/a3 where ca3= φ is
the monomer volume fraction and a is a monomer size. Here v≈
τa3 is the second virial coefficient, τ = (T - Θ)/T is a reduced
temperature characterizing the deviation from theΘ temperature,
the third virial coefficient iswa6 = const0, and k is the Boltzmann
constant. The MF regime is realized for brushes of semiflexible
chains with persistence length lp ≈ pa such that 1 < p, N when
Σ j p4/τ2.29 In this regime, the SCF theory yields analytical
expressions for the concentration profiles of the brush, φ(z)30-32

(Appendix I). In turn, these yield explicit expressions for the
local osmotic pressureΠ(z)=φ(∂finter/∂φ)- finter of a bulk solution
with φ = φ(z). Within the brush, Π(z) specifies the lateral
pressure30 (Appendix II). With these ingredients at hand, we
identify the free energy penalty of insertion of a sharp tip with the
work expended against Π(z) of the unperturbed brush

Fins ¼
Z Hbrush

D
ΠðzÞ AðzÞ dz ð1Þ

Here, A(z) is the cross-sectional area of the tip at z, D is the
altitude of the tip’s apex, and Hbrush is the equilibrium height of
the unperturbed brush. The corresponding force law is thus

fins ¼ -
D
DD

Z Hbrush

D
ΠðzÞ AðzÞ dz ð2Þ

We obtain explicit force laws for marginal good solvents, when
finter ≈ τφ2/a3 leading to Π(z)a3/kT ≈ τφ(z)2, and for Θ solvents,
where finter≈ wφ3/a3 andΠ(z)a3/kT≈ 2wφ(z)3/a3. To this end, we

Figure 1. Compressive versus insertive modes. Large colloidal
probe (a) approachs the surface by compressing the brush. In
contrast, sharp tips, exemplified by cylindrical (b), paraboloid
(c), and conical tips (d), perturb the brush only locally.

(24) Ermilov V.; Lazutin A.; Halperin A. Macromolecules 2010, 43, 3511-3520.
(25) Halperin, A. Langmuir 1999, 15, 2525–2533.
(26) Halperin, A.; Fragneto, G.; Schollier, A.; Sferrazza, M. Langmuir 2007, 23,

10603–10617.
(27) Halperin, A; Kr€oger, M Langmuir 2009, 25, 11621–11634.
(28) Taunton, H. J.; Toprakcioglu, C.; Fetters, L. J.; Klein, J. Macromolecules

1990, 23, 571.

(29) Birshtein, T. M.; Zhulina, E. B. Polymer 1984, 25, 1453–1461.
(30) Milner, S. T.; Witten, T. A.; Cates, M. E. Macromolecules 1988, 21,

2610–1619.
(31) Zhulina, E. B.; Borisov, O. V.; Priamitsyn, V. A. J. Colloid Interface Sci.

1990, 137, 495–511.
(32) Milner, S. T. Science 1991, 251, 905–914.



DOI: 10.1021/la9047374 8935Langmuir 2010, 26(11), 8933–8940

Halperin and Zhulina Article

utilize the SCF concentration profiles31 (Appendix I)

φðzÞ ¼
φ0 1-

z2

H0
2

 !
marginal solvent

φθ 1-
z2

Hθ
2

 !1=2

Θ solvent

8>>>>>><
>>>>>>:

ð3Þ

Here, φ0 and φΘ denote the monomer volume fraction at the
grafting surface formarginal andΘ solvents, respectively, and the
corresponding brush heights are H0 and HΘ:

φ0 ¼ 3π2=3

4ðτpÞ1=3
a2

Σ

 !2=3

H0 ¼ 8

π2

� �1=3

ðτpÞ1=3 a2

Σ

 !1=3

Na

φΘ ¼ 2

ðwpÞ1=4
a2

Σ

 !2=3

HΘ ¼ 4

π

wp

2

� �1=4
a2

Σ

 !1=3

Na

ð4Þ
As noted earlier, Fins is actually the work expended to oppose the
“lateral osmotic pressure” in the brush,Πlat. In brushes exhibiting
MFbehavior,Πlat(z) =Π(z), while in athermal solventΠlat(z) =
8Π(z)/7. In the following, we focus on the MF case where
analytical solutions of φ(z) lead to simple expressions for the
force profiles.

As stated earlier, our analysis concerns sharp tips that approach
the brush coated surface without compressing the brush. This
insertive mode is realized for small particles while large particles
follow the compressive mode. The definition of large and small
depends on the form of the particle. For a sphere of radiusRp, the
crossover between two regimes is defined in terms of Hbrush. The
compressive regime occurs for Rp . Hbrush, while the insertive
regime occurs for Rp , Hbrush. In physical terms, the distinction
arises because chain trajectories circumventing the particle are
realizable only for Rp , Hbrush.

33 In the case of cylindrical tips,
whose overall height L is larger than Hbrush, the crossover as
observed in simulations occurs roughly at rcyl ≈ R0, where R0 ≈
N1/2a is the lateral spanof a grafted chain in a brush.19When rcyl.
R0, the chains between the tip and the surface are confined and the
force law approaches the force profile of compression by a planar
surface. In the opposite limit, the splayed chains configurations
circumvent the tip, and the force profile is much shallower.

The insertive force law is traceable toΠ(z) of the unperturbed
brush. For compression by an infinite planar piston, the known
force profile within the SCF theory30,31 is also traceable to theΠ
of the brush (Appendix I):

Pplanar ¼ Π½φconfinedðHÞ� ð5Þ
However, in this case,Π[φconfined(H)] isΠ of the confined brush at
the impenetrable boundary at height H<Hbrush, where the local
volume fraction is φ= φconfined(H). Accordingly, the compressive
force profile of a tip within the Derjaguin approximation is

fcomp ¼
Z AðHbrushÞ

AðDÞ
Π½φconfinedðzÞ� dAðzÞ ð6Þ

Thus, while both force laws are traceable toΠ, in the insertive case
it isΠ(z) of the unperturbed brush while in the compressive case it
is Π at the edge of the confined brush.

At this point, it is useful to comment on the utility of the
Alexander model34 for obtaining force laws. For weak compres-
sions, it leads to harder repulsion in comparison to the SCF com-
pressive force law.30,31 In addition, it does not lead to Pplanar =
Π[φconfined(H)] obtained in the SCF theory (Appendix I).With these
caveats, The Alexander model allows one to successfully fit SFA
force profiles28 where the compressive regime is certainly operative.
In marked contrast, it leads to qualitatively wrong results for the
insertive force profile. Since it assumes a steplike concentration
profile,φwithin thebrush is constant and so isΠ. For cylindrical tips
of cross-sectional area Acyl, the insertion mode for the Alexander
model leads toFins=Acyl(Hbrush-D)Π. Accordingly, the force law
is fins = -∂Fins/∂D = AcylΠ = const0, in qualitative disagreement
with the simulation results of Murat and Grest.19

Note that Fins as discussed above does not allow for surface
effects. In bulk solutions, the insertion of a nonadsorbing particle
incurs free energy penalty comprising two contributions Fins

bulk =
Π(φ)Vp þ γ(φ)Sp.

35 Here, Π(φ)Vp is the osmotic work expended
upon insertion of a particle of volume Vp. γ(φ) is the surface
tension due to the formation of depletion layer at the particle
solution interface, γ(φ)Sp is the work associated with its
creation, and Sp is the surface area of the particle. A similar
situation is expected in the brush. For simplicity, our analysis
ignores surface effects. The range of validity regime of this
Fins ≈ Π(φ)Vp estimate is particularly transparent in athermal
solvents when both Π(φ) and γ(φ) are determined by the blob
size ξ= aφ-3/4,36,37 withΠ(φ)= kT/ξ3 36,37 and γ(φ)= kT/ξ2.38

For sharp tips, it is of interest to consider Fins of cylinders and
cones. Neglecting numerical prefactors as well as the contribu-
tion of the basal area, and denoting the basal radius by R and
the height by L, leads to

Fbulk
ins

kT
=

Rcyl
2Lcyl

ξ3
1þ ξ

Rcyl

 !2
4

3
5 cylinder

Rcone
2Lcone

ξ3
1þ ξ cos θ

Rcone

� �" #
cone

8>>>>>>><
>>>>>>>:

ð7Þ

where θ is the apex half angle of the cone. Accordingly, for
these two cases, Fins

bulk = Π(φ)Vp is a reasonable estimate when
the basal radius is large compared to the blob size, ξ/Rcyl, 1 or
ξ cos θ/Rcone, 1. This suggests that the surface tension contri-
bution may play a role for certain sharp tips, such as CNT
probes. One should also note that surface effects such as
ordering and depletion are not well described by the SCF
theory we use. We finally emphasize that the discussion of
surface effects requires modification when the polymers adsorb
to the tip.

III. The Insertion Mode of Sharp Tips

The force on the tip within the insertion case, as specified
by eq 2, assumes its simplest form for a straight cylinder with
radius rcyl such that the tip’s cross section is disklike with an area
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Acyl=πrcyl
2 irrespectiveof zorD.Accordingly, fins=-Acyl(∂/∂D)R

D
Hbrush Π(z) dz= AcylΠ(D). Since the osmotic pressure at the

apex, Π(D), and Hbrush depend on the solvent quality, we obtain

fins ¼
AcylΠ0 1- q0

2
� �2

marginal solvent

AcylΠΘ 1- qΘ
2

� �3=2
Θ solvent

8>><
>>: ð8Þ

where q0 =D/H0 and qΘ =D/HΘ. Here, the osmotic pressure at
z = 0 for a marginal solvent is Π0a

3/kT = τφ0
2, whereas for a Θ

solvent it is ΠΘa
3/kT = 2wφΘ

3.
For conical and paraboloid tips, where A(z = D) = 0, the

insertive force is fins = -
R
D
Hbrush Π(z) (∂A(z)/∂D)dz. The force law

for a marginal solvent is thus of the form fins = Ai
0Π0ψi

0(q)
(Appendix III).Here,Ai

0 is the basal areaof a tip fully immersed in
a brush swollen by a good solvent, with its apex at the surface, and
ψi
0(q0) is a polynomial of q0. For a conewith an apex half angleΘ,

the basal area isAcone
0 = πH0

2 tan2 θ, while for paraboloidwith tip
curvature R the basal area is Apara

0 = 2πRH0. Altogether

fins ¼

A0
coneΠ02

1

6
-

8
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q0 þ q0
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-
q0
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6
þ q0
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cone; marginal solvent
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8

15
- q0 þ 2q0

3

3
-
q0
5
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paraboloid; marginal solvent

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ

In aΘ solvent, the force laws assume the form fins=Ai
ΘΠΘψi

Θ(q),
where the three factors retain their physical significance but
adopt different forms. In particular

fins ¼

AΘ
coneΠΘ

1

20
8 þ 9qΘ

2 - 2qΘ
4

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1- qΘ

2

q
- 15qΘ arccos qΘ

� �
cone Θ solvent

AΘ
paraΠΘ

1

8
3 arccos qΘ - qΘ 5- 2qΘ

2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1- qΘ
2

q� �

paraboloid Θ solvent

8>>>>>>>>>><
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ð10Þ
where the immersed areas aremodified toAcone

Θ =πHΘ
2 tan2θ and

to Apara
Θ = 2πRHΘ because the brush height in a Θ solvent is

lower. For cylindrical tips, in contrast to conical and paraboloid
ones,Acyl

0 =Acyl
Θ =Acyl irrespective of the solvent quality. Impor-

tantly, fins for the insertion mode is finite, irrespective of the tip
geometry or solvent quality. However, the ψ(q) plots associated
with the various tip shapes differ significantly in their ψ(0) values
such that ψcyl(0) > ψpara(0) > ψcone(0) (Figure 2).

The performance of these force laws is best judged upon
comparison to the simulation results of Murat and Grest.19 For
(a2/Σ) = 0.1, v = 1, and p = 1, roughly corresponding to the
simulation conditions,19Π0= 0.12kT/a3. For these paramters, the
force law for a cylindrical tip, as specified by eq 8, is in
semiquantitative agreement with the simulation results. The small
deviations from the simulations results may be attributed to three
factors: (i) Equation 8 was obtained for marginal solvent, while
the simulations involved an athermal solvent. (ii) The derivation
of eq 8 overlooks surface effects. (iii) The cylindrical tips only
approximate the simulations where the cylinders carried spherical
caps. For these parameters, it is also of interest to comment on the
experimental potential of carbon nanotube tips as realization of

cylindrical probes.17,18 Commercially available CNT probes are
characterized by rcyl = 0.6 nm for SWNT and rcyl = 1.2 nm for
double-walled CNT.40 The associated force scale AcylΠ0 is,
respectively, 22 and 90 pN, thus suggesting the feasibility of their
use to probe polymer brushes and similar polymer layers.

IV. TheCompressionMode of SharpTips: TheDerjaguin
Approximation

It is instructive to compare the insertive force laws with their
compressive counterparts. We limit the discussion to marginal
solventswhere analytical results are available. TheΘ solvent force
laws can be obtained numerically (Appendix I). For marginal
solvents, the free energy per chain of a brush confined by a planar
surface at altitude H is Fplanar = (5/9)F0[t

2 þ 1/t -t5/5], where
t = H/H0 and F0 = kT(9π2/3/10)(τ2/p)1/3(a2/Σ)2/3N is the free
energy per chain in the unperturbed brush31 (Appendix I). The
pressure exerted by the compressed brush is thus

Pplanar ¼-
DFplanar

ΣDH
¼ P0

1

t
- t2

� �2

ð11Þ

where P0 = 5F0/9ΣH0 = 4Π0/9 is the pressure scale. The
Derjaguin approximation for the “compressive” force experienced
by a right cylinder tip with a basal area Acyl = πrcyl

2 is fcomp =
AcylPplanar or

fcomp ¼ AcylPplanar ¼ AcylP0
1

q
- q0

2

� �2

cylinder ð12Þ

For conical and paraboloid geometries, the force on the tip is
fcomp =

R
A(D)
A(H0) dA(z) Pplanar(z), where dA(z) of a cone is dA(z) =

2π(z - D)tan2θ dz while for a paraboloid it is dA(z) = 2πR dz
(Appendix III). fcomp assumes the form fcomp=Ai

0P0R0
i(q0), where

Ai
0 is the geometry specific basal area of the fully inserted tip, as

discussed in section III, and R0
i(q0) is a geometry dependent

function.

fcomp ¼
A0

coneP02 -
3

2
þ 9q0

5
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q0
3

3
þ q0

6
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- ln q0

 !
cone

A0
paraP0 -

9

5
þ 1

q0
þ q0 -

q0
5

5

 !
paraboloid

8>>>>>><
>>>>>>:

ð13Þ

Figure 2. Reduced force profile in the insertivemode in amarginal
solvent, fins/Ai

0Π0=ψi
0(q) versus the reduced insertion depth q0=

D/H0, for cylindrical (continuous), paraboloid (dot-dashed), and
conical (dashed) tips.

(40) Available from Nanosensors at http://www.nanosensors.com/prod_cat_
sss.html.
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In contrast to the fins obtained for the insertion mode, fcomp in the
compressive mode diverges for deep insertions, as D f 0. As
expected, the divergence is steeper for cylinders than for para-
boloids, with it beingweakest for cones (Figure 3). Yet, irrespective
of the geometry, this feature leads to qualitatively different
behavior in comparison to the insertion mode (Figure 4).

V. Discussion

Within our discussion, AFM force force profiles fall into
two categories. Large tips, as realized by colloidal probes,
compress the brush upon approaching the surface, and their
force profile is obtainable by the Derjaguin approximation.
Sharp tips approach the surface while inducing a short
ranged perturbation, and their insertion is opposed by the
osmotic pressure of the unperturbed brush. In this case, the
static force law is obtained without recourse to the Derjaguin
approximation. The insertion mode rationalizes experimental
observations and simulation results showing that the AFM force
profile obtained with sharp tips is shallower than the force law
observed in SFA experiments. In qualitative terms, the two force
laws differ because the compressive force profiles diverge for deep
penetrationswhile the insertion force profiles do not. Formargin-
al andΘ solvents, the insertion mode force laws assume a simple
analytical form. These are attained at the price of neglecting
surface effects and utilizing SCF results with their underlying
assumptions. They enable however fitting and interpretation of
sharp tip AFM force profiles as obtained experimentally or via
simulations.

Care should be taken in applying the static sharp tip force laws.
Two questions are involved: First, is the tip motion slow enough
to justify the use of a static force law derived from thermo-
dynamics? Second, is the tip utilized sharp in the sense that its
insertion induces only a short-range perturbation of the brush?
The first question was theoretically analyzed for the case of SFA
by Fredrickson and Pincus41 focusing on the role of hydro-
dynamic lubrication. For a brush swollen by athermal solvent
and a constant approach rate, they concluded that the static force
laws are applicable for velocities lower thanVz∼ kT/ηRξ. Here, η
is the solvent viscosity,R is the radius of curvature of the spherical
“tip”, and ξ ≈ Σ1/2 is the blob size within the Alexander model
assuming a steplike concentration profile.34 Applying their
results to colloidal tips, utilizing typical values of T= 300 K,
η=10-2 P, ξ=1 nm, and R= 15 μm leads to Vz of the order
of 10-2 cm/s. To our knowledge, there is no similar analysis
for the case of sharp tips. In this last case, it is necessary to
estimate the relevant equilibration time of the brush. The
perturbation due the insertion of a sharp tip is local. It affects
a small number of chains, and it does not affect the chain
trajectory as a whole. A full analysis of this problem is beyond
the scope of this paper, and we limit ourselves to an intuitive
conjecture. To this end, we consider a cylindrical tip immersed
in a brush swollen by athermal solvent and described by
the Alexander model. In this situation, one may argue that
the tip perturbes chain segments of span Rcyl comprising nb =
(Rcyl/ξ)

2 blobs. The associated relaxation time, allowing the
chain segment to diffuse a distance Rcyl, is

39

τs = nb
2
τξ =

Rcyl

ξ

� �4

τξ =
ηRcyl

4

ξkT
ð14Þ

where τξ = ηξ3/kT is the Zimm time36 of the blob. The
insertion of the tip does not perturb the equilibrium when
the approach rate is slow enough, suggesting that the time for
displacing the apex by Rcyl is long compared to τs or that the
approach velocity is lower than Vs = Rcyl/τs. For T = 300 K,
η = 10-2 P, ξ = 1 nm, and Rcyl = 1 nm, corresponding
to a SWNT, eq 14 leads to τs = 10-9 s and Vs = 102 cm/s.
Altogether, the above considerations suggest that thermo-
dynamic force laws apply for low but attainable approach
velocities. However, the applicability of the static insertion
mode force laws also depends on the form of the tip. For
pyramidal probes with a wide half-cone angle, they may be
realized only for shallow penetrations since for deep inser-
tions the span of the perturbed region can be larger than H0.
On the other hand, the sharp tip force profiles are expected to
describe CNT tips at both shallow and deep insertions. This is
of interest because the insertion force profile affords a super-
ior discriminatory power as illustrated by the signatures of the
Alexander model and the SCF theory, models that are harder
to distinguish in the compression mode. In considering such
experiments, it is necessary to allow for two additional points:
One is the tilt angle of the CNT with respect to the central axis
of the probe. Second, the force scale depends on Ai

0Π0 or
Ai
ΘΠΘ, while Π0 and ΠΘ increases with the grafting density.

Accordingly, for sparse brushes, it may be necessary to utilize
multiwalled nanotubes or bundles of SWNTs, with a larger
cross section.
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Figure 3. Reduced force profile in the compressive mode in mar-
ginal solvent, fcomp/Ai

0P0 = Ri
0(q0) versus the reduced insertion

depth q0 = D/H0, for cylindrical (continuous), paraboloid (dot-
dashed), and conical (dashed) tips.

Figure 4. Reduced force law of cylindrical tips, f/Acyl
0 Π0 versus

q0 = D/H0, in the compressive (continuous) and insertive (dot-
dashed) modes.

(41) Fredrickson, G. H.; Pincus, P. Langmuir 1991, 7, 786–795.
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Appendix I: The Compression Force within the Self
Consistent Field Theory of Brushes

The primary aim of this Appendix is the discussion of the SCF
compressive force law in terms ofΠ for marginal andΘ solvents.
It also provides a brief summary of the SCF theory31 leading to
eqs 3 and 4. Within the SCF theory, the free energy per chain in
the brush is

Fchain

kT
¼ Felastic

kT
þFinter

kT

¼ 3

2pa2

Z H

0

gðhÞ dh
Z h

0

Eðh, zÞ dzþΣ

Z H

0

finter½φðzÞ� dz
ð15Þ

The first term allows for the elastic free energy while the second
reflects the contribution due to monomer-monomer inter-
actions. In the elastic free energy, E(h,z) = dz/dn is proportional
to the local tension at zwhen the chain end is ath, (3kT/pa2)E(h,z),
and g(h) is the distribution function of the altitude of the free
ends, h. The average tension per unit area at altitude z, Tn(z),
is thus

TnðzÞ ¼ 3kT

pa2Σ

Z H

z

Eðh, zÞ gðhÞ dh ð16Þ

The interaction free energy giving rise to the second term is
specified in terms of the free energy density kTfinter[φ(z)] given by
the virial expansion finter[φ(z)]a

3= τφ2(z)þwφ(z)3þ ...Within the
strong stretching approximation, only chains with h g z con-
tribute to φ(z) and the three unknown functions that specify the
brush are thus related via

φðzÞ ¼ a3

Σ

Z H

z

gðhÞ
Eðh, zÞ dh ð17Þ

The brush properties are determined by minimization of Fchain

subject to two constraints

Z h

0

dz

Eðh, zÞ ¼ N ð18Þ

and

Σ

a3

Z H

0

φðzÞ dz ¼ N ð19Þ

The minimization leads to two key equations

Eðh, zÞ ¼ π

2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 - z2

p
ð20Þ

and

a3δfinter
δφ

� UðzÞ ¼ Λ-
3π2

8pa2N2
z2 ð21Þ

OnceΛ is determined via the constraint 19, this last equation leads
to solutions for φ(z) in particular cases such as confined or free
brushes in marginal solvent, when δfinter/δφ = 2τφ/a3, or in a Θ
solvent, when δfinter/δφ= 3wφ2/a3. In the following, we follow a
somewhat different route and first utilize eqs 20 and 21 to express

the equilibrium Felastic and Fchain as functions of φ and the yet
unknown Λ.

To this end, we now introduce an elastic free energy density
kTfelastic(z) such that Felastic = kTΣ

R
0
Hfelastic(z) dz or

felastic ¼ 3

2pa2Σ

Z H

z

Eðh, zÞ gðhÞ dh

¼ 3π

4Npa2Σ

Z H

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 - z2

p
gðhÞ dh ¼ TnðzÞ

2kT
ð22Þ

Substituting eq 20 into Felastic as defined in eq 15 leads to

Felastic

kT
¼ 3π

4Npa2

Z H

0

gðhÞ dh
Z h

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 - z2

p
dz

¼ 3π

4Npa2

Z H

0

dz

Z H

z

gðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 - z2

p
dh ð23Þ

To express felastic(z) as a function of φ(z) and z, we first obtain

dfelastic

dz
¼ -

3π

4Npa2Σ
z

Z H

z

gðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 - z2

p dh ¼ -
3π2

8N2pa5
zφðzÞ

ð24Þ

thus leading to

felasticðzÞ ¼ -
Z H

z

dfelastic

dt
dt ¼ 3π2

8N2pa5

Z H

z

tφðtÞ dt ð25Þ

which recovers eq 24 upon taking the derivative and satisfies
the requirement that felastic = 0 at z = H. Noting the similarity
between the RHS of eq 25 and dU/dz as given by eq 21, together
with U(z) = a3δfinter/δφ and

R
z
HU(z) dφ = a3

R
z
H dfinter leads to

a3felasticðzÞ ¼ -
1

2

Z H

z

dUðtÞ φðtÞ

¼ 1

2
UðzÞ φðzÞ- 1

2
UðHÞ φðHÞþ 1

2

Z H

z

UðtÞ dφðtÞ

¼ ΠðzÞa3
2kT

-
ΠðHÞa3
2kT

ð26Þ
For a free brush at equilibrium, whenΠ(H) = 0, this ensures the
local force balance, Π(z) = Tn(z). Utilizing eq 25 leads to

Felastic

kT
¼ Σ

Z H

0

felasticðzÞ dz

¼ 3π2Σ

8N2pa5

Z H

0

tφðtÞ dt
Z t

0

dz

¼ 3π2Σ

8N2pa5

Z H

0

z2φðzÞ dz ð27Þ

where the RHS is obtained upon changing the order of integra-
tion with respect to z and t. Substitution of (3π2/8Npa2)z2 =
Λ - a3δfinter/δφ, as obtained from 21, leads to

Felastic

kT
¼ Σ

Z H

0

Λ

a3
-
δfinter
δφ

� �
φðzÞ dz ð28Þ
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and

Fchain

kT
¼ Σ

Z H

0

Λ

a3
-
δfinter
δφ

� �
φðzÞþ finter

" #
dz

¼ Σ

Z H

0

ΛφðzÞ
a3

-
Π

kT

� �
dz ¼ ΛN-Σ

Z H

0

ΠðzÞ
kT

dz ð29Þ

since Σ
R
0
H
φ(z) dz = Na3 and Π(z)/kT = φδfinter/δφ - finter. The

pressure exerted by a brush compressed by a planar surface at
altitude z = H<H0 is

Pplanar ¼ -
DFchain

ΣDH

¼ - kT
N

Σ

DΛðHÞ
DH

þ ΠðHÞþ
Z H

0

DΠðzÞ
DH

dz ð30Þ

Equation 21 leads however to ∂Λ/∂H = (a3δ2finter/δφ
2)(∂φ/∂H)

while Π/kT = φδfinter/δφ - finter leads to ∂Π/kT∂H = φδ2finter/
δφ2)(δφ/δH) and ∂Π(z)/kT∂H=φ(z,H)[∂Λ(H)/a3∂H]. Since for a
confined brush

R
0
H
φ dz = Na3/Σ, the first term in eq 30 cancels

with the last and

Pplanar ¼Π½φconfinedðHÞ� ð31Þ

To find an explicit force law, it is necessary to invoke a specific
choice of finter and use it to obtain the corresponding φ(H). Thus,
for a marginal solvent, when δfinter/δφ = 2τφ/a3, eq 21 assumes
the form φ(z)=Λ0- (3π2/16τpa2N2)z2, leading to eq 3 onceΛ0 is
specified by eq 19. For a brush confined by a planar boundary at
z = H < H0, this leads to

Λ0ðHÞ ¼ Na3

ΣH
þ π2

16τpa2N2
H2 ð32Þ

and, upon defining t = H/H0 and y = z/H0, to

φðz,HÞ ¼ Na3

ΣH0

1

t
þ 1

2
ðt2 - 3y2Þ

� �
ð33Þ

This in turn yields

φðHÞ ¼ Na3

ΣH0

1

t
- t2

� �
ð34Þ

which upon substitution in Πa3/kT = τφ2 leads to eq 11.
For aΘ solvent, when δfinter/δφ=3wφ2/a3, eq 21 assumes the

form φ(z) = [ΛΘ - (π2/8wpa2N2)z2]1/2. For an unconfined layer,
utilizing φ(HΘ) = 0 and eq 19 leads to

ΛΘ ¼ π2

8wpa2N2
H2

Θ ¼ 2

wp

� �1=2
a2

Σ
ð35Þ

and HΘ as given in eq 3. For a layer confined by a planar
boundary at H<HΘ

φðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛΘðHÞ- π2

8wpa2N2
z2

s
¼

ffiffiffiffiffiffiffi
ΛΘ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2tΘ

2 - yΘ
2

q
ð36Þ

where tΘ = H/HΘ, yΘ = z/HΘ and u = (HΘ/H)[ΛΘ(H)/ΛΘ]
1/2=

tΘ
-1[ΛΘ(H)/ΛΘ]

1/2. Accordingly, eq 19 assumes the form

Z tΘ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2tΘ

2 - yΘ
2

q
dyΘ ¼ a2

Σ

Na

HΘ
ffiffiffiffiffiffiffi
ΛΘ

p ¼ 4

π
ð37Þ

leading to, upon utilizing arctan x= arcsin x/(x2 þ 1)1/2, to

π

2tΘ
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 - 1

p
þ u2 arcsin

1

u
ð38Þ

Numerical solution of eq 38 for a given H and qΘ yields the
corresponding ΛΘ(H), thus specifying φ(z) and allowing one to
calculate Pplanar using eq 31.

Appendix II : Fins within the Alexander Model

While the Alexander model34 yields qualitatively wrong force
profiles, its simplicity allows one to gain insights concerning Fins
associated with the insertion of a tip of volume Vtip into a brush.
Although the formofFins=ΠVtip is identical to the corresponding
bulk penalty, the underlying physics is not. Two points deserve
attention:One concerns the physical interpretationofFins=ΠVtip.
As noted in the text, Π is actually the lateral pressure rather than
the osmotic pressure of the brush.The second concerns the physical
origin of the insertion penalty. In contrast to bulk solutions, it is
due to both elasticity and monomer-monomer interactions.

In the Alexander model, the monomer concentration profile is
steplike and all chain ends straddle the brush boundary. The free
energy per chain comprises two contributions Fchain = Felastic þ
Finter corresponding to the elastic penalty incurred because of the
chain stretching and to monomer-monomer interactions. In the
mean field regime, the chain exhibits Gaussian statistics and
Felastic/kT = H2/Na2, where N is the polymerization degree and
a is the monomer diameter. The interaction free energy is Finter =
kTΣHfinter, where kTfintera

3= τφ2 þ wφ3 is the MF interaction
free energy density. In the following, we will mostly consider the
marginal solvent case fintera

3 = τφ2. In athermal solvents, the
Gaussian elasticity of a chain of blobs isFelastic/kT=H2/φ-1/4Na2

while the corresponding interaction free energy kTfintera
3 = φ

9/4.
We first discuss the “osmotic pressures” of the brush, distinguish-
ing between Π = -∂Finter/Σ∂H|Σ=const, the normal pressure
Πnorm = -∂Fchain/Σ∂H|Σ=const, and the lateral pressure Πlat=
-∂Fchain

eq /Heq∂Σ|H=Heq
. For this purpose, it is essential to keep

track of numerical factors arising from differentiation. The
equilibrium condition, ∂Fchain/∂H = 0, for a marginal solvent
leads to Heq/a = (τ/2)1/3N(a2/Σ)1/3, φeq = (2/τ)1/3(a2/Σ)2/3 and
Fchain
eq /kT = 3(τ/2)2/3N(a2/Σ)2/3. The condition ∂Fchain/∂H = 0 is

equivalent toΠnorm= Tn-Π=0, whereTn is the normal tension
per unit area in the brush. The force balance at equilibrium,Tn=Π,
leads to Πa3/kT = τφeq

2 = τ1/322/3(a2/Σ)4/3 and Πlat = Π. In
athermal solvent, the equilibriumcondition, ∂Fchain/∂H=0, leads to
Heq/a= (5/7)1/3N(a2/Σ)1/3, φeq = (7/5)1/3(a2/Σ)2/3 and Fchain

eq /kT=
(12/7)(7/5)5/12N(a2/Σ)5/6. Again, ∂Fchain/∂H = 0 implies Πnorm =
Tn - Π=0, and the force balance at equilibrium Tn =Π leads to
Πa3/kT = (5/4)φeq

9/4 = (5/4)(7/5)3/4(a2/Σ)3/2. However, in contrast
to the marginal solvent case, for athermal solventsΠlat = (8/7)Π as
discussed in ref 30 in a somewhat different language.

To explore the physical origins of Fins, we consider a tip of
constant cross section Atip fully inserted into a brush of laterally
mobile chains having a total surface area ST. The tip is fully
immersed; that is, its total length is larger than the equilibriumbrush
height and its inserted volume is thus AtipHeq =Vtip. The area
per chain of the unperturbed brush is Σi while after tip insertion
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ST - Atip= (ST/Σi)Σf, thus leading to a smaller area per chain
Σf = Σi(1 - Atip/ST). The insertion free energy is

Fins ¼ ST

Σi
FeqðΣf Þ-FeqðΣiÞ
	 
 ð39Þ

In the limit of large ST, wemay approximate [(a2/Σf)
m- (a2/Σi)

m]≈
(a2/Σi)

mm(Atip/ST) and since AtipHeq = Vtip we obtain

Fins

kT
¼

ST

Σi
3

τ

2

� �2=3

N
a2

Σf

 !2=3

-
a2

Σi

 !2=3
2
4

3
5 ¼ ΠVtip

kT

marginal solvent

ST

Σi

12

7

7

5

� �5=12

N
a2

Σf

 !5=6

-
a2
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2
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3
5 ¼ 8
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kT
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8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð40Þ
thus suggesting Fins =ΠlatVtip. In this simplified case, Fins is due to
uniform lateral compressionof the brush, thus giving rise an increase
in both Felastic and Finter. For partial insertion and for brushes with
immobile head groups, the perturbation of the brush is not uniform.
However, in every case, Fins reflects both elastic and interaction
contributions.

Appendix III: Conical and a Paraboloid Tips

A cone with a half-angle θ having its apex at altitude z=D
has a radius r(z) = (z - D)tan θ at altitude z. Accordingly,

Acone(z) = π(z - D)2 tan2 θ, and the insertion force on a
conical tip is

fins ¼ 2Ai
coneΠi

Z 1

qi

ð1- y2i Þni ðyi - qiÞ dyi ð41Þ

where i= 0,Θ and y0 = z/H0, yΘ = z/HΘ q0 = D/HΘ with n0 =
2 and nΘ = 3/2, leading to the upper lines in eqs 9 and 10. A para-
boloid tip with its apex at z = D is specified by z - D = r2(z)/2R,
where R is the radius of curvature at the apex, z= 0. Accordingly,
r(z) = [2R(z - D)]1/2 and Apara(z) = 2πR(z - D), thus yielding

fins ¼ Ai
paraΠi

Z 1

qi

1- yi
2

� �ni
dyi ð42Þ

leading to the lower lines in eqs 9 and 10.
For a cone, dr(z) = tan θ dz and dA(z) = 2π(z - D)tan2θ dz.

The compressive force on a conical tip in a marginal solvent
is thus

fcomp ¼ 2A0
coneP0

Z 1

q0

ðy0 - q0Þ 1

y0
- y0

2

� �
dy0 ð43Þ

For a paraboloid, dz/dr = r/R and dA(z) = 2πR dz. The
compressive force on a paraboloid tip inserted into a brush
swollen by a marginal solvent is accordingly

fcomp ¼ A0
paraP0

Z 1

q0

1

y0
- y0

2

� �
dy0 ð44Þ


