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Abstract. The Affymetrix U95 and U133 Latin Square spike-in datasets are

reanalysed, together with a dataset from a version of the U95 spike-in experiment

without a complex non-specific background. The approach uses a physico-chemical

model which includes the effects the specific and non-specific hybridisation and probe

folding at the microarray surface, target folding and hybridisation in the bulk RNA

target solution, and duplex dissociation during the post-hybridisatoin washing phase.

The model predicts a three parameter hyperbolic response function that fits well with

fluorescence intensity data from all three datasets. The importance of the various

hybridisation and washing effects in determining each of the three parameters is

examined, and some guidance is given as to how a practical algorithm for determining

specific target concentrations might be developed.
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1. Introduction

A number of papers [15, 16, 7, 4, 6, 10, 14, 8, 17] have used chemical adsorption models

to analyse data from two well-known Affymetrix Latin-Square spike-in experiments [1],

known as the U95 and U133 datasets. The immediate aim of these papers has been

to study the physical processes responsible for converting concentrations of specific

target RNA in prepared solutions hybridised onto microarrays to measured fluorescence

intensities. Their ultimate aim has been to provide biologists with a practical algorithm

for estimating absolute specific target concentrations in the presence of a complex

non-specific background from fluorescence intensity data. Even though there are a

number of existing algorithms (or “expression measures”) of varying degees of statistical

sophistication currently available to and widely used by biologists, such algorithms

pay little attention to the detailed physics and chemistry of hybridisation at the

microarray surface. As a result they are prone to underestimating fold changes

at high target concentrations because saturation effects are not modelled, and at

low target concentrations because of a failure to account adequately for non-specific

hybridisation [9]. Furthemore, the measures reported are not target concentrations as

such, but surrogates derived directly from fluorescence intensities. At best, they could

be described as an unknown increasing function of specific target concentrations, modulo

statistical noise.

Before a reliable algorithm for inferring target concentrations can be developed, an

accurate model of the physics and chemistry of the process is needed. In a recent review

of chemical adsorption effects at the microarray surface [2], Binder has described in detail

a number of processes influencing fluorescence intensity measurements, including bulk

dimerisation of target molecules in solution, non-specific hybridisation and probe folding

at the microarray surface, and partial zippering of duplexes. Analyses of the Affymetrix

spike-in data have provided strong evidence that these effects cannot be ignored. For

instance, Binder and Preibisch [6] have isolated the effects of specific and non-specific

binding, Carlon and Heim[10] and Heim et al. [14] have stressed the importance of bulk

hybridisation and target folding in solution, and by analysing other data sets, Matveeva

et al.[19] have produced evidence for the importance of probe folding.

More recently, analyses of the U95 dataset [8, 17] and subsequent experimental

evidence [21] have demonstrated the significant influence of the post-hybridisation

washing step in determining fluorescence intensities. Although the washing step has an

important scaling effect over the whole range of target concentrations, it is particularly

noticeable as a probe sequence dependent scaling of the asymptote of the measured

intensity isotherm at saturation concentrations. Because adsorption theories of the

hybridisation step which neglect the post-hybridisation washing predict a common

asymptote for these isotherms, many adsorption-model-based analyses of the Affymetrix

Latin Square data sets have forced the data to fit a common asymptote [16, 10, 14, 6],

in spite of strong statistical evidence to the contrary [7, 15].

In this paper we reanalyse both the U95 and U133 datasets, and a third dataset
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which is analogous to the U95 dataset, but without the complex background. Our

analysis uses a chemical adsorption model which includes a number of chemical reactions

occurring during the hybridisation and post-hybridisation washing steps. Details of the

datasets are summarised in Section 2, and all three datasets are shown to be consistent

with the empirical observations previously observed for the U95 dataset, namely that

measured fluorescence intensities follow a hyperbolic isotherm with probe-sequence

dependent parameters [7]. Our physico-chemical model is described in Section 3 and

demonstrated to be quantitatively consistent with these observations in Section 4. A

quantitative analysis of how well the model fits the three datasets is given in Section 5.

An analysis in Section 6 gives some indication of how intensity measurements over a

whole microarray might be used to infer some of the isotherm parameters for each feature

on the microarray, which in turn has the potential to contribute towards development

of a practical algorithm for estimating target concentrations. Concluding comments are

given in Section 7.

2. Datasets and empirical fits

Three datasets are analysed in this paper, the two publicly available Affymetrix Latin-

Square spike-in experiments [1], known as the U95 and U133 datasets, and a version

of the U95 dataset without the complex human pancreas background, kindly made

available to us by Affymetrix. We will refer to these datasets as numbers I, II and III

respectively.

In the manufacture of Affymetrix GeneChip R© arrays, single strand DNA probes,

25 bases in length are synthesized base by base onto a quartz substrate using a

photolithographic process. They are attached to the substrate via short covalently

bonded linker molecules roughly 10 nanometres apart. A microarray chip surface is

divided into some hundreds of thousands of regions called features, commonly 11 to

20 microns square, and with the single strand DNA probes within each feature being

synthesized to a specific nucleotide sequence.

The main step in the laboratory process of gene detection with microarrays is the

hybridization of cRNA target molecules, fractionated to lengths of typically 50 to 200

bases and with biotin labels attached to their U and C bases, onto the single strand

DNA probes. The hybridisation is performed at 45◦C for 16 hours. The microarray is

then washed to remove excess cRNA target, the biotin labels stained with fluorescent

dye, and the density of hybridized probe-target duplexes in each feature detected via

intensity measurements of the fluorescent dye. Each gene or EST is represented by a

set of pairs of features (16 pairs in the case of the U95 dataset and 11 pairs for U133)

using sequences of length 25 selected for their predicted hybridization properties and

specificity to the target gene. The first element of the pair, termed the perfect match

(PM), is designed to be an exact match to the target sequence, while the second element,

the mismatch (MM), is identical except for the middle (13th) base being replaced by its

complement.
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In the Affymetrix spike-in experiments, RNA transcripts were spiked in at cyclic

permutations of a set of known concentrations together with a complex background

of cRNA extracted from human pancreas (dataset I), human adenocarcinoma cell line

(dataset II), or no background (dataset III). Each of datasets I and III consist of PM and

MM fluorescence intensity values from a set of 14 probe sets corresponding to 14 separate

genes, each containing 16 probe pairs. For each probe set a set of fluorescence intensity

values was obtained for the 14 spiked-in concentrations 0, 0.25, 0.5, 1,2, . . . , 1024 pM.

In common with previous analyses of dataset I, the following analysis of datasets I and

III is restricted to 12 of the 14 genes, omitting data from the two defective probesets,

36889 at and 407 at. Dataset II consists of PM and MM fluorescence intensity values

from a set of 38 probe sets corresponding to 38 separate genes, each containing 11 probe

pairs. For each probe set a set of fluorescence intensity values was obtained for the 14

spiked-in concentrations 0, 0.125, 0.25, 0.5, 1, . . . , 512 pM. Dataset II also contains data

from a further 4 bacterial gene probe sets each containing 20 probe pairs, which we do

not include in the current analysis.

In a previous paper [7] it was demonstrated that the dataset I is consistent with

the empirical observation that the measured fluorescence intensities I(x) at spike-in

concentration x are sampled from a Gamma distribution with constant coefficient of

variation about a mean given by a hyperbolic response curves of the form

I(x) = A + B
Kx

1 + Kx
. (1)

Importantly, it was further shown using a thorough statistical analysis that each of

the parameters A, B and K is feature (i.e. probe-sequence) dependent, and that the

asymptote, limx→∞ I(x) = A + B, is almost invariably lower for the MM feature than

the neighbouring perfect-match PM feature within any PM/MM pair.

On the assumption that by far the greatest proportion of the intensity signal across

a whole microarray in either dataset I or II comes from the complex background, we

have preprocessed the data by carrying out a quantile normalisation across each of these

two datasets [18]. Thus all microarrays within a particular dataset have a common

distribution of fluorescence intensities after preprocessing. Because of the absence of a

complex background, we have not carried out this step for dataset III. Instead we have

included in the fit the “wafer dependent scaling” described as Model E in ref. [7] to allow

for the fact that the three replicates of the experiment used microarrays constructed

from three separate wafers. That is to say, we fit to the data a model of the form

I(x) = λw[Ap+BpKpx/(1+Kpx)], where the index w = 1, 2, 3 labels the three replicates,

the index p labels a feature within a probe set and the scaling factors satisfy 1
3

∑

w λw = 1.

In Figures 1 and 2 are plotted fits of fluorescence intensity data to the response

curve Eq. 1 for one of the spiked-in transcripts for datasets I and III. A complete

set of analogous plots for all transcripts from all three datasets can be found at

http://dayhoff.anu.edu.au/~conrad/Spike in Isotherms/.

For a small minority of features the fit gives negative values to some of the

parameters A, B or K, whereas the physical model set out in Section 3 predicts that all

http://dayhoff.anu.edu.au/~conrad/Spike_in_Isotherms/
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Figure 1. Fits of fluorescence intensity data to the hyperbolic response curve Eq. 1 for

the spiked-in transcript 37777 at for dataset I. PM data are in blcak and MM data in

red. Spike-in concentrations (horizontal axes) in picomolar on a logarithmic scale, and

fluorescence intensities after quantile normalisation (vertical axes) are in the arbitrary

units used in Affymetrix cel files on a logarithmic scale.

three parameter should be positive. This problem is more slightly more prevalent for

MM features than for PM features, and is most acute for dataset II. In some cases, such

as probe number 3 in Fig. 1, it appears that the data does not extend far enough into

the high concentration, i.e. saturation, limit to allow an acceptable fit. In other cases,

such as probe number 9 of Fig. 2, the data may be too noisy. The range of spike-in

concentrations used in Dataset II is shifted downwards from that of datasets I and III,

and as such may not be adequately probing the saturation region to give acceptable fits

in all cases. Furthermore, the spike-in concentrations at the lower end may be probing

the regime in which the target concentration is depleted during the hybridisation step,

which is beyond the applicability of the model leading to Eq. 1 which we describe below.

The analyses in Sections 4 and 5 below are restricted to the subset of fits to Eq. 1 for

which all three parameters A, B and K are positive. Table 1 gives the coefficient of
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Figure 2. Fits of fluorescence intensity data to the hyperbolic response curve Eq. 1 for

the spiked-in transcript 37777 at for dataset III, without the complex human pancreas

background.

variation of the fitted data for each dataset, and the percentage of features for which

an acceptable fit with three positive parameters to the hyperbolic response function

was obtained. In general, agreement with a hyperbolic response curve with positive

parameters is excellent for datasets I and III, and reasonable for dataset II.

3. The model

Consider the response of a given feature to a spike-in concentration x of a particular

RNA transcript in the presence of an unknown complex background of non-specific

target RNA. We write the measured fluorescence intensity I(x) in the form

I(x) = a + bθ(x), (2)

where a is a physical background due to effects unrelated to fluorescent label carrying

duplexes, such as reflection from the glass surface of the microarray, and b is the
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Table 1. Coefficient of variation of the data, assumed to distributed from

a Gamma distribution with constant coefficient of variation within any one

dataset about a mean given by Eq. 1. The two right hand columns give the

percentage of probesets which for which the fit gives positive values to all three

parameters A, B and K.

Dataset Coef. of % of accepted fits

variation PM MM

I 0.12 97.9 91.6

II 0.14 72.5 37.5

III 0.17 100 98.4

Table 2. Chemical species present in the model.

S Single strand PM-feature-specific RNA target in solution

NSi Single strand non-specific RNA target in solution of species i

S.NSi Bound RNA/RNA duplex in solution unavailable for hybridisation

S ′ Folded specific target in solution rendered unavailable for hybridisation

P Unbound probe at the microarray surface

P.S Duplex formed from PM-feature-specific RNA target binding to probe

P.NSi Duplex formed from non-specific RNA target binding to probe

P ′ Folded probe at the microarray surface rendered unavailable for hybridisation

maximum fluorescence intensity, that is, the contribution from fluorescent dye if all

probes on the feature were occupied with labelled probe-target duplexes. It is argued

in ref. [2] that the maximum intensity b should vary only weakly due to differing probe

sequences. Throughout this paper we assume a and b to be fixed constants for a given

microarray. The coverage fraction, θ(x), is the fraction of probes on the feature carrying

probe-target duplexes at the time of scanning. It satisfies 0 ≤ θ(x) ≤ 1.

The coverage fraction is determined by a number of reactions between various

chemical species. The species and reactions considered in our model are set out in

Tables 2 and 3 respectively. The first five reactions in Table 3 are assumed to reach

equilibrium during the hybridisation step. The rate constants Kbulk
i , KSfold, KS, KNS

i and

KPfold are the ratio of the forward to backward rates for each reaction. The washing

phase, which is primarily designed to remove unbound targets before scanning, also

dissociates some duplexes[8, 17]. Thus the last two reactions are unidirectional as

dissociated duplexes are continuously flushed out of the cartridge and replaced with

a buffer solution containing no RNA.

The effect of the first two reactions, bulk hybridisation and specific target folding

in solution, is to reduce the concentration of specific target available for hybridisation
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Table 3. Chemical reactions occurring in the model. Rate constants, defined

as the ratio of forward to backward reaction rates, are given in the right hand

column.

In bulk solution Non-specific hybridisation S + NSi ⇀↽ S.NSi Kbulk
i

Specific target folding S ⇀↽ S ′ KSfold

At the microarray Specific hybridisation P + S ⇀↽ P.S KS

surface Non-specific hybridisation P + NSi ⇀↽ P.NSi KNS
i

Probe folding P ⇀↽ P ′ KPfold

During the Dissociation of specific duplexes P.S → P (+S)

washing phase Dissociation of non-specfic duplexes P.NSi → P (+NSi)

onto the microarray from its spike-in value of x to a value [S], that is the concentration

of single strand RNA target S in solution. (Following the usual convention, square

brackets indicate concentrations.) For these reactions we follow the analysis of ref. [14].

The label i in Table 3 ranges over all possible subsequences of the 25-mer part of the

specific target RNA sequence complementary to the PM probe. The species NSi in this

reaction includes any target RNA molecule containing a subsequence complementary to

the ith subsequence. At equilibrium, we have

[S ′]

[S]
= KSfold,

[S.NSi]

[S][NSi]
= Kbulk

i . (3)

The relation x = [S] + [S ′] +
∑

i[S.NSi] then gives

[S] =
x

1 + KSfold + Xbulk
, (4)

where

Xbulk =
∑

i

[NSi]K
bulk
i . (5)

The next three reactions, occurring at the microarray surface, determine the duplex

coverage fraction of the feature at the end of the hybridisation step, and before washing.

Let the fraction of probes on the feature that have formed duplexes with either specific or

non-specific target mRNA molecules and survived to a time tW after the commencement

of the washing process be θ(x, tW ). We split the fraction of probes which have formed

duplexes at the end of the hybridisation step and before washing into two contributions:

θ(x, 0) = θS + θNS. (6)

The first contribution, θS ∝ [P.S], is that due to duplexes formed with specific mRNA

targets, and the second contribution, θNS ∝
∑

i[P.NSi], is that due to duplexes which

have formed with non-specific mRNA targets, the sum being over targets containing a

subsequence complimentary to the ith subsequence of the probe.
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Either by balancing equilibrium concentrations against chemical rate constants [4]

or by considering the Gibbs distribution of states at constant chemical potential [13, 8]

one obtains the isotherms

θS =
XS

1 + KPfold + XS + XNS
(7)

θNS =
XNS

1 + KPfold + XS + XNS
(8)

where, following the notation of ref.[2], we define

XS = [S]KS, XNS =
∑

i

[NSi]K
NS
i . (9)

The calculation leading to these isotherms assumes negligible depletion of target

molecules in bulk solution during the hybridisation process.

Note that, in the asymptotic limit of high spike-in concentration, namely x → ∞

while holding [NSi] constant, Eqs. 4 to 9 imply θS → 1 and θNS → 0, implying that

the feature becomes saturated with specific duplexes. This is contrary to the differing

isotherm asymptotes observed empirically. To explain the differing asymptotes, we

include in our model the final two reactions in Table 3, namely the washing step [8].

Define the probability that a given probe-target duplex has survived up to a washing

time tW to be sS(tW ) for a specific duplex and sNS
i (tW ) for a non-specific duplex of

species i. The survival functions sS and sNS
i depend on probe and target base sequences,

satisfy sS(0) = sNS
i (0) = 1, are positive and are monotonically decreasing. Defining an

average non-specific survival function sNS(tW ) by

XNSsNS(tW ) =
∑

i

[NSi]K
NS
i sNS

i (tW ), (10)

the coverage fraction at washing time tW is then

θ(x, tW ) = θSsS(tW ) + θNSsNS(tW ). (11)

Substituting Eqs. 7 and 8 and rearranging gives

θ(x, tW ) =
XNSsNS(tW )

1 + KPfold + XNS
+ (12)

(

sS(tW ) −
XNSsNS(tW )

1 + KPfold + XNS

)

(1 + KPfold + XNS)−1XS

1 + (1 + KPfold + XNS)−1XS
.

Finally, with help from Eqs. (4) and (9), and suppressing the tW dependence, we get

θ(x) = α + β
Kx

1 + Kx
, (13)

where

α =
XNSsNS

1 + KPfold + XNS
, (14)

β = sS − α, (15)

K =
KS

(1 + KSfold + Xbulk)(1 + KPfold + XNS)
. (16)
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This model, summarised by Eqs. (2) and (13) is consistent with the empirical

observation of Eq. (1), with

A = a + bα, B = bβ. (17)

Eqs. 14 to 17 (with the help of Eqs. 5, 9 and 10) relate the empirically fitted parameters

A, B and K to underlying physical quantities, namely a, b, the concentrations of

chemical species in Table 2, reaction rates in Table 3 and washing survival functions sS

and sNS
i .

Physical effects which have not been included in the model include target depletion,

which should only manifest at extremely low target concentrations, incomplete probe

synthesis during the manufacturing process [12], and probe-probe interactions. Each

of these effects will, in theory, cause the response curve to deviate from a hyperbolic

form. A discussion of probe-probe interactions, for instance, can be found in ref. [8].

The choice of model in this paper is guided by a desire to balance complexity of the

problem with practicality.

4. Qualitative behaviour of the fits

Before considering a detailed analysis of the ability of the model to explain the

parameters of the empirical fits, one can carry out a number of simple qualitative checks.

The first three panels of Figure 3 compare the fitted saturation asymptotes A + B for

PM/MM pairs of features for each of the three datasets. Consistent with the hypothesis

that a portion the bound probe-target duplexes are removed during the washing step,

the asymptotes cover a broad range of values. The MM asymptote is almost always

less than its PM partner, consistent with the scenario that a saturated feature of PM

duplexes will lose less duplexes to washing than the partner saturated feature of less

tightly bound MM duplexes [8]. The observed pattern breaks down at higher values of

A+B, as the fits must be extrapolated further past the highest spike-in concentration to

estimate the asymptote, and numerical accuracy is lost. This is most evident for dataset

II, for which spike-in concentrations only extend to 512 pM, compared with 1024 pM for

datasets I and III.

From Eqs. 15 and 17, the saturation asymptote is given by I(∞) = A+B = a+bsS.

This depends only on the rate sS at which specific duplexes are dissociated by the

washing process, and not on the properties of non-specific duplexes. Thus the model

predicts that the asymptote of the response function is unaffected by non-specific

hybridisation. The fourth panel of Figure 3, which compares the asmptote for dataset I,

(U95 with a complex non-specific background), with that for dataset III, (U95 without

a non-specific background), confirms this. That is, the asymptote I(∞) for any feature

is the same for dataset I as for dataset III to within the standard errors of the isotherm

fits.

The parameter A in Eq. 1 is the baseline intensity estimate at zero spike-in

concentration. From Eq. 17, it consists of a physical background component a, and
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Figure 3. The first three panels show fitted asymptotes I(∞) = A + B, defined in

Eq. 1 for PM/MM pairs for each of the three datasets. The fourth panel compares

the asymptotes for dataset I (with non-specific background) with those for dataset III

(without non-specfic background). Standard errors arising from the fits to Eq. 1 are

also shown.

a component due to non-specific hybridisation, bα. Consistent with this, the A values,

shown in Fig. 4, are spread over a much broader range for datasets I and II in which a

complex mRNA background was present than for dataset III with no background and

therefore little non-specific hybridisation.

An obvious pattern, which emerges from comparing A from PM/MM pairs of

features in datasets I and II, is that non-specific hybridisation is stronger for a probe

whose middle base is a pyrimidine (C or T) than for its partner probe whose middle base

is a purine (A or G). This effect has been noted previously for microarray intensity data

generally, and there is some debate about the its physical origins [20, 5, 11]. The effect

is better understood at the level of individual letter frequencies. Binder et al.[4] have

noted that probe sensitivities increase with C-content, and decrease with A-content,

while the G- or T-content of the probe has little effect. There are probably two effects

contributing to this pattern. Firstly, the averaged contributions to DNA/RNA binding

energies calculated from nearest neighbour stacking models [22] are ordered as [3, 11]

|∆Gav
C | > |∆Gav

G | ≈ |∆Gav
T | > |∆Gav

A |, (18)

causing the substitution of a pyrimidine by a purine to decrease probe sensitivity and

vice versa. Secondly, there is the simple geometric effect that pyrimidines, having a small
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Figure 4. The log of the fitted baseline fluorescence intensities I(0) = A, defined in

Eq. 1, for PM/MM pairs for datasets I and III. The middle (13th) base of the PM

probe sequence is colour coded as indicated. The fourth panel shows a histogram of

lnA (in blue), a kernel density estimate of the histogram using a gaussian kernel with

a bandwidth of 0.025 (in black), and a fit of the left part of the histogram to a Gamma

distribution in A with a mean of 59 and a coefficient of variation of 0.057 (in red).

single ring structure, will tolerate mismatches more easily than purines, which have a

double ring structure, and would therefore need to deform the molecular backbone to

bind with a target closely matching the probe sequence either side of the central base. No

obvious pyrimidine/purine asymmetry is observed in the A values from dataset III. This

is to be expected as the parameter A in this case is essentially the physical background

without hybridisation contributions.

The fourth panel of Fig. 4 shows a histogram of A values from dataset III, for which

there is no complex background present. There is very little non-specific hybridisation,

and most of this data represents statistical noise in the physical background parameter

a (defined in Eq. 2). Ignoring the tail, which we assume to be due to a small amount

of non-specific hybridisation from the other spiked-in transcripts in the latin square

protocol, we estimate a by fitting the left hand part of the histogram to a gamma

distribution in the unlogged data. The fitted distribution has a mean of 59 and a

coefficient of variation of 0.057.
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Figure 5. The log of the fitted parameters K, defined in Eq. 1. The first and

second panels compare PM/MM pairs for each of the three datasets. The third panel

compares datasets I and III, with and without the complex human pancreas background

respectively. The fourth panel compares the increase in lnK for MM with that for PM

when the complex human pancreas background is removed.

Various comparisons of the effective adsorption rate constant K are shown in Fig. 5.

This parameter is modelled in terms of more fundamental rate constants via Eq. 16. One

can reasonably assume the differences between PM and MM for the indirect effective

rate constants Xbulk, KPfold and XNS to be small compared with that for the specific rate

constant KS, because of averaging over large numbers of non-specific species. Thus, to

a reasonable approximation, lnKPM/KMM ≈ ln KS
PM/KS

MM ≈ −∆∆G/RT , where ∆∆G

is the difference in specific binding energies between a specific mRNA target and a PM

and MM probe respectively. This empirical result has been noted previously as a shift

away from the diagonal in a plot of KPM versus KMM for dataset I [15] and for dataset

II [6], and is confirmed here for all three datasets.

Estimates of −∆∆G were obtained by taking a weighted average of −∆∆Gp =

(ln KPM − ln KMM)p over fitted isotherms p for each of the central base letters. The

weighting
∑

p

(

−∆∆Gp/s
2
p

)

/
∑

p

(

1/s2
p

)

, where sp is the standard error in ∆∆Gp

estimated from the standard error in Kp arising from the isotherm fit is chosen to

minimise the error in the average. The results, given in Table 4, are consistent with
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Table 4. −∆∆G estimated from a weighted average of (ln KPM − ln KMM) for

each of the four central bases.

C G T A

Dataset I 1.09 ± 0.05 0.94 ± 0.06 0.98 ± 0.04 0.74 ± 0.04

Dataset II 1.74 ± 0.14 1.43 ± 0.10 1.26 ± 0.05 0.84 ± 0.06

Dataset III 1.10 ± 0.04 0.90 ± 0.04 0.97 ± 0.03 0.66 ± 0.03

the ordering of binding energies calculated from nearest neighbour stacking models in

Eq. 18.

The third panel of Fig. 5 compares the effective rate constant K for the U95

experiments with and without the complex human pancreas background. From Eq. 16,

one sees that removing the background, which has the effect of setting Xbulk and XNS

to zero, should increase K. This is confirmed in the plot, and is also evident as a shift

in the inflection points to the left between Figs. 1 and 2. The fourth panel compares the

amount by which ln K increases as the complex background is removed for PM and MM.

We observe that removing the effects of Xbulk and XNS affects K for a PM probe and

its MM partner by a similar factor. The small number of points away from the diagonal

line to the left of the plot are caused by the difficulty in fitting the MM isotherm when

K−1
MM is beyond the upper limit of the range of spike-in concentrations.

5. Quantitative behaviour of the fits

In this section we explore the ability of the model to explain the quantitative relationship

between the fitting parameters of the hyperbolic response curve Eq. 1 and known

physical properties of microarrays. We divide the analysis into two parts: The

parameters A and B which set the vertical scale of the hyperbolic response curve, and

the parameter K which sets its horizontal scale.

5.1. Vertical scale parameters

The parameters A and B are explained in the model in terms of the more fundamental

quantities a, the physical background and b, saturation intensity above background

(which together set the intensity scale in terms of the dimensionless duplex coverage

fraction) and α and β (which are driven by the chemical reactions in Table 3).

We begin with a and b, which are assumed to be fixed for an entire microarray.

In Fig. 6 are plotted histograms of measured fluorescence intensities across microarrays

from datasets I and II. Because these data have been quantile normalised, a common

histogram will apply to all microarrays within a given dataset. In the absence of

statistical noise, the parameters a and a + b should provide bounding limits for these

histograms. However, given the coefficients of variation reported in Table 1, the raw

intensity measurements could well extend beyond these limits. According to Eq. 17 the
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Table 5. Fitted parameters, to 3 significant figures, occuring in the analysis of

Section 5.

Defining equation Parameter Dataset I Dataset II Dataset III

(2) a 88.4 30.0

log10 a 1.95 1.48

b 32300 48800

log10 b 4.51 4.69

(20) c0 62.2 37.9

λ0 0.0920 0.0841

(24) c1 −16.1 −14.8

(α Model 2) c2 −0.186 −0.148

c3 0.124 0.102

(28) c1 −14.8 −14.8

(α Model 5) c2 −0.200 −0.149

c3 0.0776 0.101

λα 0.176 0.909

µα 4.57 -6.14

(43) λS 0.145 0.0824 0.0944

(K Model 7) µS −62.9 69.4 −73.4

λSfold 0.204 0.131 0.202

µSfold −59.3 −51.5 −73.7

λPfold 0.268 0.100 0.385

µPfold −0.757 136 0.917

parameter a should also be a lower cutoff on the fitted parameter A (corresponding to

the case of negligible non-specific hybridisation), while the analysis of A in Section 4 for

dataset III (see the fourth panel of Fig. 4) suggests a much smaller coefficient of variation

for the fitted value of A than for the intensity data generally. For these reasons we use as

an estimate of a the minimum over all fits within a dataset of the parameter A. These

estimates are shown in Fig. 6, together with bars extending two standard deviations

either side using the coefficients of variation in Table 1.

To estimate the saturation parameter b from fits to the hyperbolic response function,

and to explain the observed values of the combination α + β, we make use of the

model’s prediction that the asymptotic intensity at high spike-in concentration, I(∞),

is determined by the washing-step survival function of PM-specific duplexes, sS(tW ) [8].

Thus from Eqs. 15 and 17 we have

I(∞) = A + B = a + b(α + β) = a + bsS(tW ) = a + be−κtW , (19)

where we assume a uniform washing rate κ that depends only on the probe and target

nucleotide sequences via their binding affinity. Following Ref. [8], we model κ in terms
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Figure 6. Histograms of quantile normalised fluorescence intensities across

microarrays in datasets I and II on a linear (upper) and logarithmic (lower) scale.

Both PM and MM intensities are included. Counts are from bins of size 0.01 on the

log intensity axis. Also indicated are estimates of the parameters a and b for each

dataset, with bars indicating two standard deviations of the spread in the intensity

data either side. The curves fitted to the histograms in the lower panel are explained

in Section 6.
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Figure 7. Fits of Eq. 21 to the parameter combination A + B of the hyperbolic

response function fits to the PM data for datasets I and II. The parameter b has been

absorbed into a shift in the ordinate.

of the RNA/DNA duplex free binding energy in bulk solution:

κtW = c0e
λ0∆GDNA/RNA/(RT ). (20)

Here ∆GDNA/RNA is calculated using the nearest neighbour stacking model and

parameters of Ref. [22], R is the gas constant, T the absolute temperature and c0 and

λ0 are undetermined constants. We use the convention that ∆GDNA/RNA is negative for

a bound state. Rearranging gives

ln(α + β) = ln
A + B − a

b
= −c0e

λ0∆GDNA/RNA/(RT ), (21)

where the A and B are determined for each feature from fitted hyperbolic response

functions, a has been estimated above, and ln b, c0 and λ0 are fitting parameters. Fits

to datasets I and II are shown in Fig. 7, and fitting parameters listed in Table 5. The

fits were done by minimising the sum of the squares of the residuals with respect to the

three fitting parameters.

The parameter α is in principle predicted by the model in terms of fundamental

physical constants via Eqs. 10 and 14. It is determined mainly by non-specific

hybridisation, including a strong influence from the probe sequence pyrimidine content

as suggested by Fig. 4, and by probe folding. Without a detailed knowledge of the

composition of the non-specific target solution, a direct evaluation of α is of course

impossible. However, one can aim for an ansatz in terms of those quantities which are

known. Following the reasoning used above, the washing-step survival function of the

ith non-specific species sNS
i (tW ) can be assumed to take the form of a double exponential

function of the corresponding free binding energy ∆G
DNA/RNA
i . The value of the double

exponential function (f(x) = e−ex
) undergoes a changeover from 1 for x << 0 to 0 for

x >> 0 over a narrow range of its argument. Thus the factor sNS
i (tW ) in Eq. 10 can

be thought of as a switch with removes from the sum any binding configuration i less

tightly bound than some threshold.
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The numerator of Eq. 14 is then a sum of reaction rate constants KNS
i , weighted

by the number of target molecules in solution with nucleotide sequences complementary

to the ith subsequence of the probe. Numerical estimates carried out in the context

of bulk hybridisation in solution[14] show that such a sum can be well approximated

as an exponential function of free binding energy of the entire probe sequence to its

complement. Assuming then that the behaviour of α is dominantly exponential in

∆GDNA/RNA, and taking into account the added effect of the probe’s pyrimidine count,

we have tested the following nested models:

Model 0: ln α = c1 + ǫ, (22)

Model 1: ln α = c1 + c2∆gDNA/RNA + ǫ, (23)

Model 2: ln α = c1 + c2∆gDNA/RNA + c3npyr + ǫ, (24)

Model 3: ln α = c1 + c2∆gDNA/RNA + c3nPyr + c4nPyr∆gDNA/RNA + ǫ,(25)

where c1, . . . , c4 are fitting parameters to be determined, ∆gDNA/RNA =

∆GDNA/RNA/(RT ), npyr is a count of the number of pyrimidines in the 25-mer probe

sequence and ǫ is the residual error, which is assumed Gaussian.

To include the effect of probe folding, we approximate KPfold in Eq. 14 by a single

exponential term

KPfold = exp[λα(µα − ∆gDNA−fold)], (26)

where λα and µα are fitting parameters and ∆gDNA−fold = ∆GDNA−fold/(RT ), where

∆GDNA−fold is calculated for each 25-mer probe sequence from Zuker’s Mfold web

server [24] with the temperature set to 45◦C and other parameters set to their default

values. The Mfold web server calculates the free energy of the most energetic folding

configuration of a given single strand DNA sequence, though ideally one should include

a Boltzman weighted sum over all possible folding configurations. Models 1 and 2 are

then nested within Models 4 and 5 respectively:

Model 4: ln α = c1 + c2∆gDNA/RNA

− ln{1 + exp[λα(µα − ∆gDNA−fold)]} + ǫ, (27)

Model 5: ln α = c1 + c2∆gDNA/RNA + c3npyr

− ln{1 + exp[λα(µα − ∆gDNA−fold)]} + ǫ. (28)

The above nested models can be tested for the significance of the extra parameters

introduced in going from a less to a more complicated model. For instance, to test

the significance of the extra parameter distinguishing model m2 from the simpler m1,

consider for each model the residual sums of squares D =
∑

ǫ2, where the sum is taken

over fitted data points. Under the null hypothesis that the extra complexity is not

significant, and assuming the data points to be independent, the test statistic defined

by

F =
(D1 − D2)/(d1 − d2)

D2/d2
, (29)
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Table 6. P-values testing significance of the extra parameter related to nested

pairs of models in Eqs. 22 to 28. Smaller p-values indicate that the extra

parameters in the more complicated model are significant. The second column

gives the extra parameters included in the more complicated of the two models.

Parameter Dataset I Dataset II

model 0 to model 1: c2 < 2 × 10−16 < 2 × 10−16

model 1 to model 2: c3 1.2 × 10−9 1.9 × 10−6

model 2 to model 3: c4 0.0098 0.648

model 1 to model 4: λα, µα 1.1 × 10−10 0.60

model 2 to model 5: λα, µα 3.4 × 10−5 0.81

model 4 to model 5: c3 0.00064 2.7 × 10−6

(where d1 and d2 count the residual degrees of freedom of m1 and m2 respectively) has

an F distribution with degrees of freedom equal to d1 − d2 and d2. This allows us to

assign a p-value to the significance of model m2 over m1.

We have fitted each of the five models to the combination α = (A − a)/b using a

and b from Table 5 and A from the hyperbolic response function fits of both PM and

MM data for datasets I and II separately. The number of data points fitted, that is, the

number of fitted hyperbolic response functions for which all three parameters A, B and

K are positive, was 364 for dataset I and 460 for dataset II. Table 6 gives the calculated

p-values.

The parameters c2 and c3 modelling linear effects in ∆GDNA/RNA and npyr

respectively are highly significant in both datasets. The parameter c4 defining a mixed

effect is barely significant at the 1% level in dataset I and not significant in dataset II,

and we shall ignore it from here on.

The probe folding effect is highly significant for dataset I, but not significant for

dataset II. Note that Models 4 and 5 contain the functional form

− ln{1 + exp[λ(µ − ∆g)]} ≈

{

λ(∆g − µ), ∆g << µ,

0, ∆g >> µ,
(30)

for λ > 0. Thus the probe folding effect “switches on” once the energy of a folded probe

is below some threshold µα, at which point the effect becomes linear in ∆gDNA−fold.

From Table 5, the fitted value of µα in Model 5 for dataset I is 4.57, whereas the

range of probe folding energies calculated by Mfold for the probe sequences of the

U95 microarray is −8.18 < ∆gDNA−fold < 2.98. Thus µα is well above the folding

energy of any of the probes, implying that the probe folding effect is effectively linear

for dataset I. On the other hand, the fitted value of µα in Model 5 for dataset II is

−6.14, which is below the range −5.49 < ∆gDNA−fold < 3.11 of calculated probe folding

energies for the U133 microarray, implying that the probe folding is switched off for

dataset II. There is no obvious reason why the probe folding parameter µα should

should shift markedly from one spike-in experiment to another, given that, although
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Figure 8. Fits of Eq. 24 (Model 2) to the parameter A of the hyperbolic response

function fits of both PM (black) and MM (red) data for datasets I and II. The

parameters a and b are from Table 5. The plotted lines correspond to the range

6 ≤ npyr ≤ 20 of pyrimidine counts, with npyr increasing from bottom to top.

the U133 probeset nucleotide sequences are completely redesigned from those of the

U95 microarray, the experimental protocol and geometry of the microarray should be

similar. One, albeit prosaic, explanation may simply be that dataset II is noisier (see

Table 1) and the probe folding effect has been lost in the noise.

Fitted parameter values of Models 2 and 5 are given in Table 5. As expected from

the above argument, the fitted parameters c1, c2 and c3 for dataset II differ very little

between Models 2 and 5. Fits of Model 2 to the data are shown in Fig. 8.

5.2. Horizontal scale parameter

The parameter K sets the horizontal scale of the hyperbolic response function Eq. 1.

K−1 is an estimate of the spike-in concentration required to give a fluorescence intensity

half way between the background, zero concentration level and the asymptotic, infinite

concentration level. Our model in Section 3 explains K as an effective rate reaction

constant which is determined by the reactions occurring during the hybridisation step,

and which is unaffected by the washing step. As was the case for the vertical scale

parameters, much of the information required to evaluate K from first principles is

unknown, and so we try for an ansatz based on probe sequences and free binding energies.

Eqs. 16, 5 and 9 give K in terms of reaction rate constants and concentrations of

reactants. In general, each term Kr or Xr occurring in Eq. 16, where r labels one of the

reactions in Table 3, is a sum of terms of the form const. × e−∆Gr
i /RT , weighted by the

concentration of reactant i. Once again we will be guided by Heim et al.’s numerical

estimate of Xbulk [14], and approximate each sum as a single exponential term. Thus

we write

Kr or Xr = exp[λr(µr − ∆gr)], (31)
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where the µr and λr are fitting parameters, and ∆gr = ∆Gr/RT , with the effective

binding energy ∆Gr for each reaction is estimated from some external physical model.

With the sign convention that ∆Gr is defined negative for a bound state, each λr is

expected to be positive.

Consider first dataset III, for which the complex non-specific background is absent.

In Eq. 16 we can set the non-specific binding terms Xbulk and XNS to zero, giving

ln K = ln KS − ln(1 + KSfold) − ln(1 + KPfold). (32)

The rate constants are modelled as

KS = exp[λS(µS − ∆gDNA/RNA)], (33)

KSfold = exp[λSfold(µSfold − ∆gRNA/RNA)], (34)

KPfold = exp[λPfold(µPfold − ∆gDNA−fold)]. (35)

For the free binding energy ∆GDNA/RNA we use the nearest neighbour stacking model

parameters of Sugimoto et al.[22], for ∆GRNA/RNA we use Xia et al.’s nearest neighbour

stacking parameters for RNA binding to RNA [23], and for ∆GDNA−fold we use Zuker’s

Mfold web server [24]. The Mfold web server also has the facility to calculate folding

energies of RNA targets. However, since for RNA target folding we are interested in the

propensity for the 25-mer stretch of target complimentary to a given probe to bind with

any segment of the much longer target RNA (or possibly another RNA molecule), we

believe it is more appropriate to model target folding in solution using an RNA-to-RNA

binding energy.

To try to understand the relative importance of each of the effects contributing to

the effective rate constant K we have analysed a set of models containing nested pairs,

the relationship between which is illustrated in Fig. 9:

Model 0: ln K = k0 + ǫ, (36)

Model 1: ln K = λS(µS − ∆gDNA/RNA) + ǫ, (37)

Model 2: ln K = k0 − ln{1 + exp[λSfold(µSfold − ∆gRNA/RNA)]} + ǫ, (38)

Model 3: ln K = k0 − ln{1 + exp[λPfold(µPfold − ∆gDNA−fold)]} + ǫ, (39)

Model 4: ln K = λS(µS − ∆gDNA/RNA)

− ln{1 + exp[λSfold(µSfold − ∆gRNA/RNA)]} + ǫ, (40)

Model 5: ln K = λS(µS − ∆gDNA/RNA)

− ln{1 + exp[λPfold(µPfold − ∆gDNA−fold)]} + ǫ, (41)

Model 6: ln K = k0 − ln{1 + exp[λSfold(µSfold − ∆gRNA/RNA)]}

− ln{1 + exp[λPfold(µPfold − ∆gDNA−fold)]} + ǫ, (42)

Model 7: ln K = λS(µS − ∆gDNA/RNA)

− ln{1 + exp[λSfold(µSfold − ∆gRNA/RNA)]}

− ln{1 + exp[λPfold(µPfold − ∆gDNA−fold)]} + ǫ, (43)

where ǫ is the residual error, which is assumed Gaussian. The first term in each of

Models 1, 4, 5 and 7 could equally well be written as k0 + k1∆gDNA/RNA to make
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Figure 9. The relationship between the nine models fitting the effective rate constant

K, namely Eqs. 36 to 43 and 46. The directions of the arrows indicate the extra effects

included in going from a simpler, nested model to a more complicated model, and the

style of the arrows indicate P-values from Table 7. Smaller P-values indicate that the

extra parameters in the more complicated model are significant. The fitted parameters

corresponding to the favoured model, Model 7, are given in Table 5

the nesting explicit, but for convenience we use a parameterisation based on Eq. 33.

Models 1 to 3 include only the effects of specific hybridisation, target folding in bulk

solution and probe folding respectively. Models 4 to 6 include pairwise effects, and

Model 7 includes all three effects. A recurring theme in these models is the functional

form of Eq. 30. Thus the target and probe folding effects “switch on” once the binding

energy is below (i.e. more tightly binding than) thresholds µSfold and µPfold respectively,

and have the effect of reducing the effective rate constant K.

P-values calculated from the F-statistic, Eq. 29, testing the pairwise comparative

significance of these models are given for Dataset III in the right hand column of Table 7

(see also Fig. 9). Results are shown for PM data only as no complete set of stacking

model parameters for ∆GDNA/RNA with mismatches is available. Comparisons of Model

0 with Models 1 to 3 indicate that, taken in isolation, the specific hybridisation and

bulk target folding effects appear not to be significant, whereas the probe-folding effect

appears to be highly significant. This is also illustrated in Fig. 10. However, when

taken in combination with probe folding, the analysis shows specific binding and target

folding to be significant at the 1% level (see the comparisons Model 3 to 5 and 3 to 6

in Table 7). Thus we accept Model 7 for Dataset III. The fitted parameters are given

in the right hand column of Table 5. Note that each λr is positive as required of the

model.

For Datasett III, the apparent non-significance of the specific hybridisation and
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Table 7. P-values testing significance of the extra parameters related to

nested pairs of Models 0 to 8 fitting the effective rate constant K. Smaller

p-values indicate that the extra parameters in the more complicated model are

significant. The number of fitted PM hyperbolic response functions for which

all three parameters A, B and K positive, and hence the number of points

fitted to the models, is 188 for dataset I, 303 for dataset II and 192 for dataset

III.

Parameter Dataset I Dataset II Dataset III

model 0 to model 1: λS 0.00028 0.00021 0.51

model 0 to model 2: λSfold, µSfold 3.5 × 10−11 1.1 × 10−7 0.32

model 0 to model 3: λPfold, µPfold 1.6 × 10−12 0.00011 4.8 × 10−15

model 1 to model 4: λSfold, µSfold < 2 × 10−16 2.3 × 10−6 1.8 × 10−9

model 1 to model 5: λPfold, µPfold 3.0 × 10−10 0.0077 < 2 × 10−16

model 2 to model 4: λS 4.4 × 10−12 0.0055 5.9 × 10−10

model 2 to model 6: λPfold, µPfold 6.8 × 10−7 0.089 < 2 × 10−16

model 3 to model 5: λS 0.087 0.023 0.00016

model 3 to model 6: λSfold, µSfold 1.4 × 10−5 9.6 × 10−5 0.00012

model 4 to model 7: λPfold, µPfold 9.1 × 10−5 0.056 7.7 × 10−14

model 5 to model 7: λSfold, µSfold 3.8 × 10−13 1.7 × 10−5 2.0 × 10−5

model 6 to model 7: λS 7.9 × 10−10 0.0034 2.4 × 10−5

model 7 to model 8: λNS, µNS 0.016 0.23

bulk target folding effects in Models 1and 2 can be explained as follows. In Model 7, the

bulk folding is a stronger effect than specific hybridisation by a factor of 2 (λSfold ≈ 2λS

in Table 5). Furthermore, from Eq. 30, the bulk folding effect is opposite in sign to the

specific hybridisation effect, and only comes into effect for ∆gRNA/RNA < µSfold = −73.7.

Also, it turns out that ∆gDNA/RNA and ∆gRNA/RNA are very highly correlated, with a

Pearson correlation coefficient of 0.89. Examination of the first two plots in Fig. 10

shows a tendency of the data to increase with ∆g to start with, while the bulk target

folding dominates, and then to decrease once the bulk folding effect switches off and the

specific hybridisation effect takes over. Attempting to fit a straight line through data

which first increases and then decreases has resulted in the conclusion that the term

linear in ∆G in Model I is not significant. A related statement has been made by Carlon

and Heim [10], namely that the effective target concentration needs to be appropriately

“rescaled” for those targets with a high binding affinity in bulk solution in order to see

the expected relationship between K and ∆GDNA/RNA.

We now turn to Datasets I and II. In the presence of a complex non-specific

background, Xbulk and XNS are reinstated in Eq. 16. The bulk hybridisation effect

will be a sum of exponentials of ∆G
RNA/RNA
i , and its modelling can be absorbed into

that for bulk target folding, while the non-specific effect will be a sum of exponentials



The physics of oligonucleotide microarrays 24

Figure 10. Fits of ln K estimated from Dataset III to Models 1, 2 and 3. Mismatch

data is also shown for Model 3 since ∆GPfold can be obtained from the Mfold web site

for all probe sequences.

of ∆G
DNA/RNA
i . Thus we set

KSfold + Xbulk = exp[λSfold(µSfold − ∆gRNA/RNA)], (44)

XNS = exp[λNS(µNS − ∆gDNA/RNA)], (45)

which suggests one further model:

Model 8: ln K = λS(µS − ∆gDNA/RNA)

− ln
{

1 + exp[λSfold(µSfold − ∆gRNA/RNA)]
}

− ln
{

1 + exp[λPfold(µPfold − ∆gDNA−fold)]

+ exp[λNS(µNS − ∆gDNA/RNA)]
}

+ ǫ. (46)

Turning to Table 7, columns I and II, we discover that the extra parameters introduced

to account for non-specific probe-target binding are not significant at the 1% level (see

also Fig. 9). This surprising result can be explained by the fact that the fitted values

of µNS are in both cases close to the maximum value of ∆gDNA/RNA within the dataset,

so most of the fitted points fall into the ∆gDNA/RNA << µNS regime of Eq. 30, and the

effect is adequately covered by the λS term of Model 7. To further illustrate the point,

fits to Models 1, 2 and 3 are plotted In Fig. 11. If Model 1 is taken in isolation, λS

appears to have the “wrong” sign, as the non-specific probe-target binding and target

folding and binding in solution all combine to dominate the specific binding effect. A

similar result is observed for dataset II.

The generally small p-values in the first column of Table 7 indicate that Model 7 is

an appropriate description of the parameter K for dataset I. For dataset II the picture

is less clear. In agreement with the analysis of the parameter α, the probe folding is in

general less significant. Nevertheless, for consistency we list the fitting parameters of

Model 7 to both datasets in Table 5, while acknowledging there is redundancy in the

Dataset II parameters.
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Figure 11. The same as Fig. 10 for Dataset I.

5.3. How close are the fits?

Fig. 12 gives some idea of how much information has been lost in the above fits. The plot

compares estimated parameters A, B and K of the fitted hyperbolic response curves,

such as those in Fig. 1, with those which would be predicted by the fitting constants

and parameters listed in Table 5, namely

A = a + bec1+c2∆gDNA/RNA+c3npyr−ln{1+exp[λα(µα−∆gDNA−fold)]}, (47)

B = a + be−c0 exp(λ0∆gRNA/RNA) − A, (48)

K =
eλS(µS−∆gDNA/RNA)

[

1 + eλSfold(µSfold−∆gRNA/RNA)
] [

1 + eλPfold(µPfold−∆gDNA−fold)
] . (49)

Dotted lines either side of the diagonal are the boundary of the region within which

predicted values do not differ from the original fitted parameters by more than a factor

of 2. A clear majority of estimates of A and B fall within this range. Clearly the

most difficult parameter to explain adequately is the horizontal scale K, owing to the

large number of contributing chemical reactions. In general, dataset II has proved to

be more problematic than dataset I, probably because the concentration range tested

does not extend far enough into the saturation regime to demonstrate a clear hyperbolic

isotherm.

6. Parameter prediction

For the above model to be of value in constructing a practical algorithm for inferring

target concentrations, some or all of its parameters should ideally be predictable

using only information available to experimental biologists. That available information

consists of fluorescence intensities for the complete set of features on each microarray

used in an experiment, the probe sequences of each feature, and any parameters

associated with the experimental protocol. By contrast, the fitted parameters of Table 5

were obtained from spike-in experiments. Comparing datasets I and III in Figs. 4 and

5, one sees for instance that the unknown nature of the complex background has a
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Figure 12. Estimated parameters obtained by fitting the the hyperbolic response

function Eq. 1 to datasets I and II (horizontal axes, together with error bars showing

standard errors) plotted against with the values that would be predicted by the

quantitative fits of Section 5 (vertical axes). The dotted lines indicate a factor of

2 either side of the diagonal.

profound effect on the parameters A and K of the hyperbolic response function. At first

sight it appears one may need a new set of spike-in data for each experiment, which

is clearly not a practical consideration. However, we argue here that if one exploits

the distribution of fluorescence intensities from the entire microarray, an estimation of

vertical scale parameters at least may be possible.

In the following qualitative description we propose a two step process for the

vertical scale parameters, in which the physical background a and maximum intensity

b for a microarray are first determined from the entire distribution of intensities over

the microarray. The intensities I(x) can then be scaled to the dimensionless coverage

fraction θ(x) via Eq. 2, and one is left with the remaining problem of estimating the

parameters α and β, which are driven by the chemical reactions of Table 3.

To estimate a and b, consider the histograms in Fig. 6. For both datasets I and

II, our estimate of the physical background a, based on hyperbolic response curves

derived from spike-in data, is close to two standard deviations above the minimum

measured fluorescence intensity. Assuming an experiment consisting of a number of

technical replicates of each hybridisation setup, the data can be quantile normalised

across replicates. A representative minimum intensity amin can be obtained by fitting a

suitable smooth curve to the logged histogram (i.e. the lower panel of Fig. 6), and the
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Figure 13. Scatter plots of measured fluorescence intensities against the theoretical

DNA/RNA free binding energies. The upper curve is the fit to A + B of Eq. 48, and

the lower set of curves are the fits to A of Eq. 47 for pyrimidine counts 6 < npyr < 20,

with npyr increasing from bottom to top. Also shown are contour lines of the density

of points.

coefficient of variation in the data η easily estimated from the replicate intensity values

over the whole microarray. (1 + 2η)amin then gives an estimate of a.

Estimating b from the histogram proves to be quite difficult because of the gradual

tail at its the right hand end. With some experimentation we find that a cubic fit to

the logged histogram over the range [l + 0.25(u− l), l + 0.875(u− l)], where l and u are

the lower and upper extremities of the histogram, crosses the log10(count) = 0 line close

to two standard deviations above the previously obtained estmate of a + b. Calling this

point (a + b)max, an estimate of a + b is then (1 − 2η)(a + b)max. However, we find that

such a method is highly sensitive to the range over which the cubic is fitted.

To gain some insight into how α and β may be estimated, consider the scatter

plot, Fig. 13, of fluorescence intensities against the theoretical free binding energy

∆GDNA/RNA obtained from the probe letter sequences using the nearest neighbour

stacking model [22]. Superimposed on these plots are the fits from Eqs. 47 and 48

to the asymptotic saturation intensity A + B and background intensity at zero spike-

in concentration A, using the parameters of Table 5. According to our model, the

asymptote curve should form an upper envelope to the data, with some slight leakage

across the envelope due to the finite coefficient of variation in the data. Because the vast

majority of the genes are not expressed in RNA samples taken from a typical cell, most

of the data is expected to lie along, or close to, the lower set of background intensity

curves. Indeed this is precisely what is seen. Conversely, in the absence of spike-in data,

there is potential to estimate the upper, asymptote intensity curve by fitting an envelope
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to the data and the lower, background intensity curve by fitting a curve through the

ridge of the scatter plot’s contour lines. In principle, these fitted curves, together with

a and b then determine estimates of α and β for each feature on the microarray.

7. Conclusions and outlook

This paper concentrates mainly on the immediate aim of understanding the physical

processes at work in the operation of microarrays, but in doing so highlights some of the

challenges and, we hope, gives some guidance, for meeting the ultimate aim of providing

an algorithm for converting the set raw fluorescence intensities from microarrays to

absolute target concentrations.

The model we have examined includes the effects of specific and non-specific

hybridisation, folding and hybridisation in bulk solution of target RNA, the folding of

probes at the microarray surface, and the removal of signal during the post-hybridisation

step. It leads to the hyperbolic response curve (or Langmuir isotherm) of Eq. 1 with

three fitting parameters A, B and K, which depend on a set underlying physical physical

parameters including chemical reaction rate constants, washing survival functions and

RNA target concentrations. In more practical terms, all three parameters will depend

on the probe letter sequence, whether the probe is PM or MM, the nature of the complex

non-specific background, and experimental protocols such as hybridisation temperature

and washing times. Determining the parameters only from information likely to be

known to biologists in a practical situation, as opposed to a highly controlled spike-in

experiment, remains a formidable task.

The model is tested against the Affymetrix U95 spike-in datasets with and without a

complex non-specific background and the Affymetrix U133 spike-in dataset. In general,

agreement with a hyperbolic response curve is excellent for the U95 spike-in datasets

and reasonable for the U133 spike-in dataset (see Table 1).

The response function parameters A and B set the vertical scale of the isotherm,

that is, the scale of the measured fluorescence intensities. The parameter A is a

combination of a relatively straightforward physical background, and a non-trivial

contribution from the complex non-specific background. It is important to understand

the nature of the non-specific background component as it is responsible for the “bright

mismatches” problem which complicates the naive PM − MM subtraction scheme used

in the MAS5 algorithm, for instance, for dealing with non-specific hybridisation. Our

analysis shows that the DNA/RNA binding energy, pyrimidine content, and (in the

case of U95 dataset) the folding of probes, all contribute significantly to the value of

this parameter. The dependence of A on binding energies and pyrimidine count is

illustrated in Fig. 8.

The parameter B (or, more precisely, the combination A + B, where B >> A in

general) is mainly concerned with the asymptote at high spike-in concentration, which,

according to our model, is driven by the washing step. The qualitative prediction that

it should be less for a mismatch feature than for a perfect match feature in a PM/MM
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pair is verified for all three datasets in Fig. 3. Its quantitative behaviour as a function

of specific probe-target binding energies, using bulk solution free binding energies as a

guide, is verified in Fig. 7.

The parameter K can be thought of a an effective overall reaction rate. It sets the

horizontal scale of the isotherm, that is, the scale of the specific target concentration.

If an algorithm to determine absolute target concentrations is to be constructed, it is

necessary to understand this parameter. Because of the large number of hybridisation

reactions which have the potential to contribute it is by far the hardest of the three

parameters to explain effectively. The model predicts that it is affected by all of the

reactions listed in Table 3 occurring in the bulk hybridisation solution and at the

microarray surface, but is unaffected by the dissociation during the washing phase.

Analysis to determine which reactions are significant is complicated by the fact that

the effect on K of non-specific hybridisation and probe and target folding act in the

opposite direction to that of specific binding, so obscuring the effects. Nevertheless,

our analysis indicates that all of the hybridisation reactions considered are potentially

significant contributors.

A common practice in previous studies [15, 16, 7, 10, 14, 17] has been to invert

fits of hyperbolic response curves to recover spike-in target concentrations in order

to test the predictive ability of models. We have deliberately refrained from doing

so here, as one of the results of this study has been to demonstrate the strong

dependence of the parameters of the isotherm on the (in practice unknown) complex

non-specific background. Recovering spike-in concentrations using fitting parameters

which implicitly contain information about the background belonging to a particular

dataset is an inherently circular argument and is guaranteed to give unrealistically good

results.

Instead, in Section 6, we address the problem of determining the hyperbolic

response function parameters from information likely to be available to biologists in

a typical microarray experiment, that is, fluorescence intensities for the complete set of

features on each microarray, the probe sequences, and parameters associated with the

experimental protocol. We argue that information for the vertical scale parameters is in

principal implicitly contained in the distribution of intensities across the microarray by

partitioning the intensities by quantities which can be estimated from probe sequences

such as probe-target binding energies, probe folding energies and probe pyrimidine

content. Determination of the horizontal scale parameter is a more formidable and

open problem.

Ultimately, our aim is find practical algorithms for biological analysis through an

improved understanding of the physics of microarrays. A problem encountered in in this

paper, particularly with analysis of the horizontal scale parameter of the isotherm K,

has been the difficulty encountered unravelling mutual correlations and compensations

between competing effects. In such cases one can never be totally certain, given the

available data, that the physical interpretation is correct. However, one could argue

that is not necessary, nor possibly even helpful, to know all of the contributing physical
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effects in order to meet our ultimate aim. If, for instance, our interpretation of the

significance analysis of various models of the parameter K in Section 5.2 is correct, we

discover that we often do just as well by modelling a number of physical effects by a

single effective term. In general, the lesson is that it is important to strike a balance

between attempting to understand and incorporate all physical aspects on the one hand,

and relying on empirically determined effective models on the other.

The above analysis has concentrated on Affymetrix gene expression microarrays.

Genomic microarrays come in a variety of types for a variety of tasks. As well as gene

expression arrays there are tiling arrays, which interrogate large contiguous tracts of

genome rather than specific genes, resequencing arrays designed to detect the location

of mutations and single nucleotide polymorphisms (SNPs), SNP arrays which are used

for genotyping, and non-DNA arrays such as protein arrays designed to identify protein-

protein interactions and antibody arrays for detecting antigens. In addition to this there

exist a number of technologies including photolithographic deposition, inkjet printing

and fabrication of probes onto micro-beads.

In each case they share the common property that they detect large biological

molecules of specific known letter sequences via their binding to complementary

sequences attached to a solid surface. In each case they will almost invariably share

the common problems of non-specific hybridisation, saturation and bulk solution target

hybridisation and folding dealt with in this work. The physico-chemical model we have

explored is consistent with spike-in data over a broad range of target concentrations and

should serve as a starting point for a variety of microarray types and platforms.

Acknowledgement

Thanks to Hans Binder, Susan Wilson and Yvonne Pittelkow for useful discussions and

advice.

Notation

a: Physical background intensity measurement from factors such as reflection off the

microarray surface and photomultiplier dark current. Assumed to be constant for

all features on a microarray.

A: One of three parameters in the hyperbolic response curve Eq. 1 fitted to the measured

fluorescence intensity data. A estimates the (background) fluorescence intensity at

zero PM-specific spike-in concentration.

b: Saturation fluorescence intensity above the physical background before washing, in

a hypothetical situation in which all probes on a feature have formed biotin label

carrying duplexes. Assumed to be constant for all features on a microarray.

B: One of three parameters in the hyperbolic response curve Eq. 1 fitted to the measured

fluorescence intensity data. A+B estimates the asymptotic saturation fluorescence

intensity at infinite PM-specific spike-in concentration.
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I(x) : Measured fluorescence intensity signal at PM-specific spike-in concentration x.

K: One of three parameters in the hyperbolic response curve Eq. 1 fitted to the

measured fluorescence intensity data. K−1 estimates the PM-specific spike-in

concentration required to give a fluorescence intensity half way between the

background level A and asymptotic level A + B.

sS(tW): The specific washing survival function, i.e. the probability that a duplex formed

with a PM-feature-specific mRNA target existing at the beginning of the washing

step will survive to a washing time tW.

sNS(tW): The non-specific washing survival function, i.e. the probability that a duplex

formed with a PM-feature-non-specific mRNA target of species i existing at the

beginning of the washing step will survive to a washing time tW.

tW: The washing time.

x: (= [S] + [S ′] +
∑

i[S.NSi]) Spike-in concentration of mRNA PM-specific target.

∆GDNA/RNA, ∆GRNA/RNA, ∆GPfold: Binding free energies of a DNA/RNA duplex, a

RNA/RNA duplex and of DNA probe self-folding. We use the convention that ∆G

is negative for a bound state. ∆gr are the corresponding dimensionless binding free

energies ∆Gr/(RT ), where R is the gas constant and T the absolute temperature.

α: The fraction of probes on the feature carrying probe-target duplexes after a washing

time of tW at zero spike-in concentration x. See Eq. 13.

β: α + β is the fraction of probes on the feature carrying probe-target duplexes after a

washing time of tW at infinite spike-in concentration x. See Eq. 13.

θ(x, tW ): The fraction of probes on the feature carrying probe-target duplexes after a

washing time of tW , as a result of a spike-in concentration x of mRNA specific to

the PM feature. At tW = the end of the washing time, that is, at the time of

scanning, we write simply θ(x).

θS, θNS: the fraction of probes on the feature carrying PM-specific and PM-nonspecific

duplexes respectively at tW = 0, i.e., after the hybridisation step and before the

washing step.

Glossary

Hybridisation. The reversible chemical reaction by which target molecules in solution

bind to probes attached to the microarray surface to form duplexes.

Microarray. A high-throughput device for detecting the presence of large biological

molecules (DNA, RNA or proteins) of specific known letter sequences via their

binding to molecules of complementary sequences attached to a solid surface. They

are high-throughput in the sense that large numbers of sequences are tested for in

a single device. The microarrays discussed here are oligonucleotide gene expression

microarrays, that is, they have short DNA probes and are intended for the detection

of expressed genes through their messenger RNA.
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Non-specific hybridisation. The hybridisation of target molecules with sequences other

than those of the intended sequence. Sometimes ‘non-specific’ is used to mean ‘non-

PM-specific’, that is, hybridisation of target molecules which are not complementary

to the PM sequence, irrespective of whether they are binding to the PM or MM

member of a probe pair. PM and MM are defined in Section 2.

Probe. A biological molecule attached to the microarray surface during fabrication.

Spike-in experiment. An experiment in which known concentrations of a specific set of

target molecules are artificially added to a solution not otherwise containing those

specific targets, and the solution hybridised onto microarrays.

Target. A biological molecule in the solution hybridised onto the microarray during a

laboratory experiment.
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