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Statistical Analysis of Adsorption Models for
Oligonucleotide Microarrays∗

Conrad J. Burden, Yvonne E. Pittelkow, and Susan R. Wilson

Abstract

Recent analyses have shown that the relationship between intensity measurements from high
density oligonucleotide microarrays and known concentration is non linear. Thus many measure-
ments of so-called gene expression are neither measures of transcript nor mRNA concentration as
might be expected.

Intensity as measured in such microarrays is a measurement of fluorescent dye attached to probe-
target duplexes formed during hybridization of a sample to the probes on the microarray. We
develop several dynamic adsorption models relating fluorescent dye intensity to target RNA con-
centration, the simplest of which is the equilibrium Langmuir isotherm, or hyperbolic response
function. Using data from the Affymerix HG-U95A Latin Square experiment, we evaluate vari-
ous physical models, including equilibrium and non-equilibrium models, by applying maximum
likelihood methods. We show that for these data, equilibrium Langmuir isotherms with probe de-
pendent parameters are appropriate. We describe how probe sequence information may then be
used to estimate the parameters of the Langmuir isotherm in order to provide an improved measure
of absolute target concentration.

KEYWORDS: Gene expression, microarrays, Langmuir adsorption
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1. Introduction

Oligonucleotide microarrays are a technology which enable the simultaneous
testing for the presence and quantification of large numbers of genes in pre-
pared target RNA samples. Affymetrix GeneChip arrays, the focus of this
paper, consist of a substrate onto which short single strand DNA oligonu-
cleotide probes have been synthesized using a photolithographic process. A
chip surface is divided into some hundreds of thousands of regions typically
tens of microns in size, the probes within each region being synthesized to a
specific nucleotide sequence. Throughout this paper we use the word ‘probe’
to refer either to a single strand of synthesised DNA, or a region of identically
synthesised strands. Dependent on the organism, each gene is represented
by a set of between 11 to 16 probe pairs termed a probeset. One element
of each pair is synthesised as a ‘perfect match’ (PM) sequence of length 25
bases, and the other a ‘mismatch’ (MM) sequence in which the middle (13th)
base has been replaced by its complement. Each PM probe is chosen to be a
non-overlapping subsequence of the full gene sequence, chosen for its predicted
hybridisation properties and specificity to the potential target gene. The tar-
get RNA sample is hybridized onto the chip to form probe-target duplexes,
and the chip scanned to obtain fluorescence intensity readings from dyes in-
corporated during the laboratory procedures. For further details, see Nguyen
et al. (2002).

In principle, with suitable calibration, intensity readings are intended to
be in some sense a measure of concentration of matching target RNA in the
sample. A number of expression indices exist which seek to extract a mea-
sure of ‘gene expression’ (see for example Affymetrix Inc. (2002) or Irizarry
et al. (2003)). Such indices are generally calculated by subtracting an es-
timate of background, often estimated from MM readings, and summarizing
over readings from probes within a probeset. The approach is purely empiri-
cal: little or no attempt is made to understand the physical processes driving
hybridization, and consequently neither the effects of saturation at high tar-
get concentration nor the effects of probe sequence specificity are accounted
for. Also the true meaning of the MM intensity reading is not properly un-
derstood. Furthermore, expression indices are given in arbitrary units and
not units of concentration. While this may have application to comparisons
between different treatments of a given transcript (gene or EST) within the
same experiment, no comparison can be made between the concentrations of
expressed RNA from different transcripts, or the same transcript in different
experiments. As we shall see below, fluorescence intensity measurements are
very strongly sequence dependent, and consequently probe dependent.
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Recently studies have begun to address these issues by appealing to models
based on well established principles of physical chemistry (Hekstra et al., 2003;
Held et al., 2003). Such models, known generically as chemical adsorption
models, offer the possibility of predicting absolute target concentrations as
opposed to relative expression measures, and hence have the potential to enable
comparisons between expression levels of different genes. It is also hoped
that an accurate understanding of the physical processes driving hybridization
will lead to improvements in microarray design. While this line of research
shows great promise, we are unaware of any thorough and rigorous comparative
statistical analysis assessing the various existing versions of adsorption models
for Affymetrix microarrays. The purpose of this paper is to carry out such an
analysis, with the eventual aim of establishing a practical relationship between
measured fluorescence intensities and the underlying concentration of mRNA
in a biological sample.

In Section 2 we develop several dynamic adsorption models, including a
simple equilibrium Langmuir isotherm, or hyperbolic response function, a non-
equilibrium Langmuir model, and the Sips isotherm. In Section 3 we apply our
approach to the publicly available data from the Affymetrix Human HG-U95A
Latin Square spike-in experiment (available off
http://www.affymetrix.com/support/technical/sample data). Our com-
parative statistical analysis is able to resolve the differing conclusions of Hek-
stra et al. (2003) and Held et al. (2003), for example, both of whom have
analysed this data set using approaches based on the equilibrium isotherm
model. Our main findings are that measured fluorescence intensity readings
for both PM and MM probes are described by a three parameter hyperbolic re-
sponse function over a range from < 1 pM to > 1000 pM, and that the response
function parameters are strongly probe sequence dependent. Furthermore, fold
changes in target concentration are clearly not linearly related to fold changes
in fluorescence intensity readings, as is generally assumed.

The practical efficacy of these findings lies in the fact that the three param-
eters defining the response function can only depend on the probe sequence,
and are therefore universal to all experimental applications of that particular
sequence. The remaining challenge, to establish an algorithm for extracting
isotherm parameters from any given probe sequence, is not dealt with in this
paper, but is the subject of ongoing work. Such an algorithm, when estab-
lished, can then be impemented as part of an expression measure of absolute
concentration. To gauge the feasibility of such an approach we analyse in
Section 4 a simple linear model for predicting isotherm parameters suggested
by Hekstra et al. (2003), and thereby develop a method that reduces po-
tential bias inherent in, and provides confidence intervals for, any estimate of

2

Statistical Applications in Genetics and Molecular Biology, Vol. 3 [2004], Iss. 1, Art. 35

http://www.bepress.com/sagmb/vol3/iss1/art35



mRNA concentration based on inverting adsorption isotherms. Finally we plot
for comparison MAS5 and RMA expression measures for the spike-in data to
illustrate that, even using this simple linear estimation of isotherm parame-
ters, a Langmuir isotherm model outperforms existing expression measures in
recovering target concentration fold changes over the full range of spiked in
concentrations.

2. Dynamic adsorption models

We consider a number of models based on a process of competing adsorp-
tion and desorption of target RNA to form probe-target duplexes at the chip
surface (Forman et al., 1998). Let θ(t) be the fraction of sites within a probe
region occupied by probe-target duplexes at time t after the commencement of
hybridization, and kf and kb be the forward adsorption and backward desorp-
tion rate constants respectively. The forward adsorption reaction is assumed
to occur at a rate kfx(1 − θ(t)), proportional to target concentration x and
fraction (1−θ(t)) of unoccupied probe sites. The backward desorption reaction
is assumed to occur at a rate kbθ(t), proportional to the fraction of occupied
probe sites. The fraction of probe sites occupied by probe-target duplexes is
then given by the differential equation

dθ(t)

dt
= kfx(1− θ(t))− kbθ(t), (1)

with initial condition θ(0) = 0. This solves to give

θ(t) =
x

x+K

[
1− e−(x+K)kf t

]
, (2)

where K = kb/kf . Setting y to be the measured fluorescence intensity and
assuming the intensity above the background value y0 at zero concentration
to be proportional to θ, we arrive at the relationship

y = y0 + b
x

x+K

[
1− e−(x+K)kf t

]
. (3)

In Figure 1 we graph the dimensionless quantities (y − y0)/b against x/K for
various values of the dimensionless inverse time τ = (kbt)

−1. For times much
shorter than the inverse backward rate constant, t << kb

−1 or τ >> 1, we
find

y − y0

b
=

x

Kτ
+O

(
1

τ 2

)
. (4)

This linear response is evident in Figure 1.
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Figure 1. Plot of the dimensionless fluorescence intensity (y − y0)/b against
dimensionless concentration x/K for various values of the dimensionless inverse
time τ = (kbt)

−1. In the equilibrium limit τ → 0 the Langmuir isotherm is
recovered.
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In the equilibrium limit t → ∞ we recover the well known Langmuir
isotherm, or hyperbolic response function,

y = y0 + b
x

x+K
. (5)

The quantity y0 + b is the saturation intensity in the limit of high target con-
centration. In this limit, the simple Langmuir model predicts θ = 1, i.e. all
probe sites are occupied by probe-target duplexes. In practice however, probe
efficiency may be affected by a number of factors, particularly on high den-
sity chips (Peterson et al., 2001). The background y0 is generally considered to
consist of a physical component from sources such as reflection and photomulti-
plier dark current, and a biological component from non-specific hybridization
(Hekstra et al., 2003). Experimentally one typically finds that y0 << b. The
parameter K is the target concentration at half-saturation and is expected on
thermodynamic grounds (Atkins, 1994) to be proportional to exp(−∆G/kBT ),
where ∆G is the probe-target binding free energy, kB is Boltzmann’s constant
and T the absolute temperature. Hekstra et al. (2003) have argued that the
parameters y0, b and K may be augmented in the presence of non-specific
hybridization while leaving the form of Eq. (5) unchanged.

We shall also consider a variant of the Langmuir isotherm, known as the
Sips isotherm (Sips, 1948)

y = y0 + b
xα

xα +Kα
, (6)

which arises by assuming the binding free energy to have an approximately
Gaussian distribution about its mean value. The parameter α takes values
between 0 and 1, the variance of the distribution decreasing as α increases.
In the limit α → 1 the distribution becomes a delta function and the Lang-
muir isotherm is recovered. Experiments at high target concentrations up to
1µM indicate that the Sips model may be appropriate in some circumstances
(Peterson et al., 2002).

3. Models and analyses for the Affymetrix data

For the Affymetrix Human HG-U95A Latin Square experiment genes were
spiked in at cyclic permutations of the set of known concentrations, together
with a background of RNA extracted from human pancreas. The data consists
of fluorescence intensity values from a set of 14 probesets corresponding to 14
separate genes, each containing nprobe probe pairs where nprobe = 16. For each
probeset a set of intensity values are obtained for the 14 spiked-in concen-
trations (0, 0.25, 0.5, 1, 2, 4, ..., 1024) pM. The experiment was replicated

5

Burden et al.: Adsorption Models for Oligonucleotide Microarrays

Published by The Berkeley Electronic Press, 2004



three times using microarray chips from different wafers. We decided to (i)
omit from our analysis two genes which suffered from defective probes (407 at
and 36889 at), leaving only the remaining 12, and an extreme probe outlier in
gene 37777 at, (ii) performed no normalization on the data before the analysis
described below, and (iii) consider only the perfect match (PM) probes, as did
Held et al. (2003).

As described in the appendix, the stochastic noise in this data set has the
property of having an approximately constant coefficient of variation across
a broad range of fluorescence intensity values. A gamma distribution with
constant shape parameter conveniently models this property and takes as its
argument only physically meaningful positive real values. Furthermore it is
consistent with the fact that fluorescence intensity, being a photon count or, at
a more fundamental level, a count of probe-target duplexes at the chip surface,
is an extensive variable in the sense that it is a physically additive quantity
(Cox and Snell, 1981). As pointed out by McCullagh and Nelder (1989), page
286, a gamma distribution is preferable to, say, a lognormal distribution in such
situations since the mean of an extensive property maintains the property of
being extensive, whereas the mean of its log, or of any nonlinear function for
that matter, does not.

Direct physical justification for the gamma assumption is found in the work
of Dennis and Patil (1984) who demonstrate that the gamma distribution
serves as a general model of a population fluctuating about a steady state
equilibrium. The class of dynamic models considered by Dennis and Patil
includes the adsorption-desorption model of Eq. (1). In the appendix we argue
that a physically reasonable model leading to an exact gamma distribution can
be constructed to describe stochastic nature of the adsorption process. We also
note work by Chen et al. (1997) who argue that intensity measurements are
linked by having a constant coefficient of variation across a broad range of
target concentrations and of Newton et al. (2001) on spotted microarrays who
also consider fluorescence data to be drawn from a gamma distribution.

For the remainder of this paper we therefore assume that the stochastic
component of the fluorescence intensity y is drawn from a gamma distribution
with mean µ and (constant) shape parameter ν having density

1

Γ(ν)

(
νy

µ

)ν

exp

(
−νy
µ

)
d(ln y); (7)

the unscaled deviance (McCullagh and Nelder, 1989) given by

D(y;µ) = −2
∑

i

[ln(yi/µi)− (yi − µi)/µi] . (8)
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Table 1
Six generalized linear models fitted to the Affymetrix Latin Square experiment. The
indices g, p and w indicate dependence of fitting parameters on gene, probe (within

each gene’s probeset) and wafer respectively.

Model Parameters
A µ = y0 + bx/(x + K) y0pg, bg, Kpg

B µ = y0 + bx/(x + K) y0pg, bpg, Kpg

C µ = y0 + bx/(x + K)
[
1− e−(1+x/K)/τ

]
y0pg, bg, Kpg, τpg

D µ = y0 + bx/(x + K)
[
1− e−(1+x/K)/τ

]
y0pg, bpg, Kpg, τpg

E µ = λ [y0 + bx/(x + K)] λw, y0pg, bpg, Kpg

F µ = y0 + bxα/(xα + Kα) y0pg, bpg, Kpg, αpg

Our aim is to select a model that is (i) parsimonious (i.e. without unneces-
sary parameters), and (ii) accurate over the full set of data. To compare models
1 and 2, with r1 and r2 residual degrees of freedom and deviances D1 and D2

respectively, where model 1 is nested within model 2 (i.e. r1 > r2 >> 1), we
use

∆Dscaled = (D1 −D2)
r2
D2

. (9)

If the extra parameters present in model 2 are not statistically significant
the scaled change in deviance is distributed approximately as a chi-squared
distribution with r2 − r1 degrees of freedom.

3.1 Models

The six models we have fitted to the data are summarized in Table 1.
Models A and B are the Langmuir isotherms of Eq. (5). They differ from
each other in that the asymptotic saturation intensity above background at
high concentration b is taken to be common to all probes within a probeset
in model A and allowed to vary across probes in model B. Model B is that
used by Hekstra et al. (2003) and Webster et al. (2003). The parameters
y0 and K can reasonably be expected to vary across probes within a probeset
given expected variations in cross hybridization levels and free binding energies
respectively.

Models C and D, corresponding to the non-equilibrium model of Eq. (3),
are extended versions of models A and B including a new set of parameters τ
representing a dimensionless inverse time. We have included these models to
investigate the hypothesis of a common asymptotic intensity b across probes
given the possibility that the hybridization had not reached equilibrium. We
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feel that this possibility should be pursued given that experimental studies such
as that quoted by Held et al. (2003) as evidence of equilibrium, namely Forman
et al. (1998), or the more recent work of Peterson et al. (2001) and Peterson
et al. (2002), are carried out at significantly higher RNA concentrations (> 1
nM) than the pM concentrations of the Affymetrix data set.

While our main concern is a comparison of the four models A to D, we
include two extra models, E and F, for completeness. We shall see below that,
of the four models described so far, model B was selected. For this reason, the
remaining two models are based on model B. Model E is an extension of model
B with a wafer dependent factor λw included to account for the possibility of
systematic variation across the three replicate experiments. The λs are scaled
so that 1

3

∑
w λw = 1, entailing that models B and E differ by only 2 degrees

of freedom. Finally, model F is an extension of model B to the Sips isotherm
Eq. (6). The parameters αgp are taken to be gene and probe dependent. The
relationship between models A to E is shown in Figure 2.

3.2 Statistical analysis

Table 2 shows calculated changes in scaled deviance for four pairwise com-
parisons between models A, B, C and D, which address the question of
whether the hypothesis of an asymptotic saturation intensity b above back-
ground common to all probes can be supported, given that hybridization may
or may not have reached equilibrium. A small number of probes have been
omitted from this analysis, either because fits gave unphysical negative val-
ues to the parameters b and K, or, in the case of probes omitted from genes
38734 at and 1091 at, to remove outlying values of intensity at high concen-
tration so as to enable fits of the common asymptote models A and C.

Minimization of the deviance over the non-linear parameters K and α was
carried out using an algorithm described in McCullagh and Nelder (1989),
while minimization over the parameters λ and τ was carried out using a steep-
est descent algorithm. For some probes we found the minimum over τ occurred
in the limit τ →∞, K → 0 with Kτ finite, consistent with the linear response
limit Eq. (4). We found that limiting the steepest descent algorithm to a max-
imum value of τmax = 60 to handle these cases made no noticeable difference
to the calculated deviance.

Examining values of ∆Dscaled for comparisons A → B and C → D, it
is clear that the extra parameters introduced to allow for a probe dependent
asymptote are significant. That is, the hypothesis of a common asymptotic sat-
uration intensity cannot be supported, irrespective of whether the equilibrium
or non-equilibrium model is assumed. The comparison B → D then shows
that the extra parameters introduced by assuming a non-equilibrium model
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Less parameters
More parsimonious

More parameters
Less parsimonious

F

Not significant

E
E

A D

C

B

Significant

Not significantSignificant

Significant Significant

Figure 2. The relationship between the six models listed in Table 1. An
arrow running from model 1 to model 2 indicates that model 1 is nested in
model 2 by the addition of extra parameters in model 2. We also indicate the
conclusions from our analysis.
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Table 2
Pairwise comparisons of models A, B, C and D. ∆r is the decrease in residual

degrees of freedom for each gene and remains unchanged for these four
comparisons. ∆Dscaled is the corresponding scaled decrease in deviance calculated

from Eq. (9).

gene ∆r ∆Dscaled omitted probes
A → B A → C B → D C → D

37777 at 15 428.5 39.4 4.15 363.0
684 at 14 662.9 55.1 2.03 544.5 7
1597 at 14 32.5 34.0 5.03 3.7 14
38734 at 11 266.5 33.9 0.57 212.1 7,8,14,15
39058 at 14 514.8 47.4 0.34 421.5 1
36311 at 15 722.6 23.1 1.13 659.6
1024 at 15 178.1 41.5 1.85 126.9
36202 at 15 369.9 25.7 7.71 333.9
36085 at 15 106.1 20.3 2.58 83.9
40322 at 15 420.6 20.2 0.00 378.0
1091 at 11 196.0 40.0 0.00 140.0 8,10,11,12
1708 at 14 661.7 37.2 2.99 577.8 13
All genes 168 4560.2 418.0 28.38 3844.9
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Table 3
Comparisons of models B → E and B → F. Column headings have the same

meanings as in Table 2.

model comparison
and gene

∆r ∆Dscaled omitted probes

B → E as in
All genes 2 2894.8 B → F below
B → F
37777 at 16 4.48
684 at 15 18.74 7
1597 at 15 8.75 14
38734 at 16 29.25
39058 at 15 24.74 1
36311 at 16 7.27
1024 at 16 3.48
36202 at 16 8.17
36085 at 16 11.90
40322 at 16 49.53
1091 at 16 4.58
1708 at 15 5.86 13
All genes 188 187.46

are not significant. We therefore accept model B, the equilibrium Langmuir
isotherm augmented with probe dependent asymptotic saturation intensities,
as the best supported of models A to D for these data.

Table 3 shows calculated values of ∆Dscaled for the extensions of model B
to model E with the introduction of an overall wafer dependent scaling, and
to model F with the introduction of a probe dependent Sips parameter. Once
again we have omitted from the analysis probes corresponding to fits giving
unphysical negative values to the parameters b and K. The decrease in scaled
deviance for the comparison B→ E is well beyond the 0.001 significance level,
indicating a scaling effect arising from the three replicate wafers. The fitted
values obtained are

λ1 = 0.883, λ2 = 1.104, λ3 = 1.014. (10)

Considering the comparison B → F, we see that the introduction of Sips
parameters αpg is significant at the 95% level for two out of the twelve probes,
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and that for all probesets taken collectively, ∆Dscaled is close to the 50th χ2

percentile. We conclude that the introduction of a Sips parameter to account
for a distribution of probe-target binding energies overall is not necessary for
PM probes. A histogram of the fitted values to αpg from model F is given in
Figure 3.

In summary, we find model E, the Langmuir isotherm with probe depen-
dent parameters y0, b and K and overall scaling λw to account for a systematic
wafer dependence, to be the best supported model of those listed in Table 1.
Plots of the fits of the fluorescence intensity data of both PM and MM probes
for gene 37777 at to model E are shown in Figure 4. The strong dependence
of the parameters of the Langmuir isotherm on individual probe sequences is
manifest; note the different scales on the vertical axes. The relationship be-
tween the respective isotherm parameters of the PM and MM probes is studied
in a companion paper (Burden et al., 2004).

4. Estimation of mRNA concentration

Ultimately one would like to predict absolute target concentrations from mea-
sured fluorescence intensities using an adsorption model with parameters solely
determined from specific probe sequences. As a first step in this direction, Hek-
stra et al. (2003) have fitted their estimated parameters from the Langmuir
isotherm model of Eq. (5) (our model B) to a simple linear model ln b

lnK
ln y0

 =

 γbA γbC γbG

γKA γKC γKG

γy0A γy0C γy0G

  nA

nC

nG

 +

 C1

C2

C3

 +

 ε1
ε2
ε3

 , (11)

where nA, nC and nG are the number of A, C and G nucleotides occurring
in each probe. Note that the constraint nA + nC + nG + nT = 25 obviates
the need for an explicit nT dependence. They then used the fitted parameters
γij and Ci to test the ability of the model to recover known spiked in RNA
concentrations given individual probe sequences and fluorescence intensities.
Here we redo this analysis, extending the methodology to accommodate more
accurate estimation of errors and reduction of bias.

Our results of fitting the parameters y0, b and K obtained from the probe
and wafer dependent Langmuir isotherm model E to the regression parameters
γij and Ci are shown in Table 4. Only those probes which give unphysical
negative values to the parameters b or K, namely those listed in Table 3, have
been omitted from our analysis. By contrast, Hekstra et al. only work with
two of the three wafers and omit almost 30% of the remaining probes which
they consider to be unsuitable.
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Figure 4. Fits to model E of fluorscence intensity data for the 16 PM (black)
and 16 MM (red) features of the gene 37777 at probeset of the Affymetrix
Latin Square experiment. Concentrations (horizontal axes) are in picomolar
and fluorescence intensties (vertical axes) are in the arbitrary units used in
Affymetrix .cel files. The fit to MM probe No. 3 gave unphysical negative
values to the parameters K and b and is not shown.
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Table 4
Fitted parameters (with standard errors in brackets) for the model of Eq. (11)

using the parameters y0, b and K obtained from the Langmuir isotherm model E.

Ci γiA γiC γiG

ln b 5.957 ( 0.294 ) -0.030 ( 0.019 ) 0.304 ( 0.025 ) 0.223 ( 0.024 )
lnK 0.917 ( 0.417 ) 0.210 ( 0.027 ) 0.175 ( 0.036 ) 0.341 ( 0.034 )
ln y0 4.437 ( 0.263 ) -0.133 ( 0.017 ) 0.185 ( 0.023 ) 0.067 ( 0.021 )

Having constructed a model for obtaining estimates b̂p, K̂p and ŷ0p of the
Langmuir parameters from probe sequences, Eq. (5) can be inverted to give
an estimate of concentration from fluorescence intensity y for each probe,

x̂p =
K̂p(y − ŷ0p)

b̂p + ŷ0p − y
, (12)

where the wafer dependence λw in model E of Table 1 has been omitted to
reflect the fact that, in an experimental situation, the overall scaling effect will
not be known.

Two questions immediately arise. Firstly, what is the best way to extract
a single concentration estimate from the nprobe values obtained for a complete
probeset, and secondly, how can unphysical estimates obtained from Eq. (12)
be dealt with? Note that unphysical estimates of x̂p can arise in two ways:
(i) if y < ŷ0p, the measured fluorescence intensity falls below the estimated

background level ŷ0, yielding a negative concentration, and (ii) if y > ŷ0p + b̂p
the measured intensity falls above the estimated saturation intensity and the
wrong branch of the hyperbola is read from Eq. (12). Both situations can
be expected to occur, given the underlying statistical nature of the observed
intensity.

Hekstra et al. (2003) propose a target gene concentration estimate given by
averaging logged probe estimates. They deal with the problem of unphysical
concentration estimates by removing the offending probes from the probeset,
giving

ln x̂gene =
1

nS

∑
p∈S

ln x̂p, (13)

where S is the subset of probes within the probeset for which ŷ0 < y < ŷ0p + b̂p
and nS is the number of elements in S. This introduces downward bias at
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high target concentrations and upward bias at low target concentrations be-
cause valid data contributing to the random distribution about the expected
intensity value has been removed. The extent of the problem is apparent in
Figure 5 which shows the percentage of x̂p values discarded at each concen-
tration. The situation can be improved at low intensities by replacing the
logarithm in Eq. (13) by arcsinh, which approximates a linear function near
zero and so accepts negative arguments. However, this does nothing to solve
the saturation problem at high concentrations.

Our alternative proposal is to replace Eq. (12) by

ln x̂p =


X if y > ŷ0p + b̂p

ln
[
K̂p(y − ŷ0p)/(b̂p + ŷ0p − y)

]
if ŷ0p < y < ŷ0p + b̂p

−X if y < ŷ0

(14)

where X is some arbitrarily chosen large value acknowledging the existence
of data beyond the capacity of the estimated inverse Langmuir isotherm. We
then replace the mean in Eq. (13) by a median,

ln x̂gene = median(ln x̂p), (15)

which will in general be unbiased by the magnitude of our artificially intro-
duced outliers ±X.

Confidence intervals can be placed on the concentration estimates using
bootstrapping with uniform resampling (Hall, 1992). A set of B estimates of
concentration is obtained, where at each iteration a probeset is constructed by
randomly resampling with replacement nprobe probes from the original probe-
set and treating each resampled probeset analogously to the original data.
Approximate equal tail 95% confidence interval limits are then given by the
2.5 and 97.5 percentiles of this set of B estimates.

Figures 6 and 7 show median log and mean log estimates of concentrations
obtained from Eqs. (15) and (13) respectively, plotted against known spiked-in
concentrations for each of the 12 genes considered here. Error bars in each
case are equal tailed 95% confidence intervals obtained from bootstrap resam-
pling with B = 100. Comparing the two methods we see that the expected
downward bias at high concentration has been corrected in several of the genes
(namely 684 at, 38734 at, 36311 at, 36202 at and, to some extent, 1708 at) by
using the unbiased median estimator instead of the mean log. The downward
bias in genes 37777 at and 40322 at appears to have been overcorrected by the
median estimator, though this could be the effect of attempting to estimate
concentrations at saturation levels for these probesets.

16

Statistical Applications in Genetics and Molecular Biology, Vol. 3 [2004], Iss. 1, Art. 35

http://www.bepress.com/sagmb/vol3/iss1/art35



0
10

20
30

40
50

60

concentration (pM)

P
er

ce
nt

ag
e 

di
sc

ar
de

d

0

0.
25 0.

5 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24
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each concentration averaged over the 12 genes considered in our analysis.
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Figure 6. Estimates of RNA concentration from medians of estimates of
probe intensities, Eq. (15), plotted against actual spiked-in concentrations.
Error bars are approximate 95% confidence intervals obtained by bootstrap
resampling. The line indicates the perfect relationship between predicted and
actual concentration.
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Figure 7. Estimates of RNA concentration from averaged logged estimates
of probe intensities, Eq. (13), plotted against actual spiked-in concentrations.
Error bars are approximate 95% confidence intervals obtained from bootstrap
resampling. The line indicates the perfect relationship between predicted and
actual concentration.
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At low concentrations the median estimator has corrected the upward bias
in genes 38734 at, 1024 at, 36202 at, 36085 at, 40322 at and 1708 at, and
overcorrected somewhat for genes 684 at, 1597 at and 39058 at. While there
has been a slight improvement for gene 1091 at, for which both methods per-
form poorly, we see that the bootstrap error bars more effectively include the
correct value when applied to the full probeset used for the median method
rather than the truncated probeset used in the mean log method.

In Figure 8 we show for comparison plots of MAS5 (Microarray Suite
version 5) (Affymetrix Inc., 2002) and RMA (Robust Multiarray Average)
(Irizarry et al., 2003) expression measures for the Latin Square data set com-
puted using functions supplied by the Bioconductor software package (Gau-
tier et al., 2003) with default settings. Also plotted are lines indicating the
expected slope of these plots assuming the log(MAS5) and RMA expression
measures are intended to be indicators of logged mRNA target concentration.
In both cases concentration fold changes are underestimated, particularly at
higher concentrations. It is clear that the use of inverse Langmuir isotherms are
a considerable improvement over existing measures in estimating fold changes
over a broad range of concentrations, including the approach to saturation.

We mention in passing a claim by Yung et al. (2004) that target concenta-
tion can be recovered from the MAS5 expression measure using a linear fit of
log2 of the MAS5 index to log2 of the spike-in concentration, namely by a uni-
versal linear fit with a slope of 0.71 to all of the upper curves in Figure 8. We
question the accuracy of this claim, which relies on the linearity of a log plot of
expression index fold changes against spike-in concentration fold changes over
the full range of possible fold changes (see Figure 3B of Yung et al., 2004).
We claim that this linearity is an artifact of having averaged over all possible
pairs of log ratios with a given spike-in fold change. This procedure masks
the systematic downward bias in expression index fold changes at saturation
concentrations evident in Figure 8. Furthermore, unlike the approach from
Langmuir adsorption theory, the use of a universal fit fails to take any account
of probe sequence dependence, also evident in Figure 8.

Finally we note that a method for estimating target concentration from
fluorescence intensities was also given by Held et al. (2003). In this case
the parameters y0 and K were estimated from probe binding free energies
and the parameter b was assumed to be universal to all genes, an assumption
inconsistent with our findings in Section 3.

5. Discussion and Conclusions

We have carried out a comparative statistical analysis of various forms of
adsorption-desorption models of oligonucleotide microarray chips using PM
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Figure 8. Log(MAS5) (+) and RMA (×) expression measures calculated from
the Affymetrix Latin Square data. The slope of the lines indicate the behavior
required of an expression measure which accurately tracks concentration fold
changes
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probe data from the Affymetrix Latin Square spike-in experiment. This anal-
ysis is a first step towards an accurate understanding of the physical and
chemical processes driving the hybridization of labelled mRNA targets at the
surface of Affymetrix Genechips. This paper has concentrated on statistical
data analyses and we have been guided by broad physical principles in our
choice of models.

Before summarizing our results, it is important to place the work in the
context of broader goals. The first of these is to provide a practical method
of estimating the absolute concentration of mRNA in biological samples taken
in a real experimental situation. We have determined the appropriate chemi-
cal adsorption model for oligonucleotide microarrays to be a three parameter,
probe sequence dependent Langmuir isotherm. The next step is to find phys-
ical and chemical explanations for the probe dependence of the parameters.
Once an algorithm for determining isotherm parameters from probe sequences
is established, then for each microarray there would be no practical impediment
to supplying a data file of all parameters necessary for determining adsorption
isotherms, and appropriate software for extracting a measure of mRNA con-
centration, complete with bootstrap confidence intervals. A second broad goal
is to improve the design of microarray chips. If the probe sequence depen-
dence of any Langmuir isotherm can be determined, one might ask whether it
is possible to reduce the number of probes required per transcript, or whether
the probe sequences could be chosen more effectively. Given that the response
of the MM probes is also described by a Langmuir isotherm (see Figure 4),
it is reasonable to ask whether better might use be made of the MM data,
or whether the MM could probes be dispensed with altogether. Construction
of a detailed model based on established principles of physical chemistry and
consistent with the findings of this statistical analysis is the subject of ongoing
work (Burden et al., 2004).

Returning to the statistical analyses in this paper, we based our compari-
son of models on an analysis of deviance within the framework of generalised
linear models (McCullagh and Nelder, 1989). We chose to assume a gamma
distribution with constant shape parameter as this treats the observed fluo-
rescence intensity as an extensive variable. The coefficient of variation was
observed to be significantly less than one for the data analysed. In this case
the gamma distribution is similar in shape to a log normal distribution, and
indicates that in an exploratory analysis, a log transformation may be satis-
factory. Also, the gamma distribution could be generalized to allow for the
observed slight upward tendency in the coefficient of variation (see appendix).

The most appropriate of the models considered was determined to be an
equilibrium Langmuir isotherm specified by three parameters: background
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intensity at zero concentration, saturation intensity at high concentration,
and target concentration at half-saturation intensity. Importantly, all three
parameters are necessarily probe dependent. This is in stark contrast with
the claims of Held et al. (2003) who fit all probe responses across all genes
to a common asymptote after binning the data by each probe’s binding free
energy. Their choice of model is more parsimonious than our model A, which
we reject as being too parsimonious, and this choice implicitly assumes that
all probes are 100% efficient. We contend that their binning procedure has no
statistical justification, and that a physical explanation for a probe dependent
saturation intensity must be sought elsewhere in the gene chip technology.
In the current work we have also been able to dismiss the possibility that a
common asymptotic intensity is masked by non-equilibrium dynamics.

To gauge the effectiveness of using the Langmuir isotherm to recover abso-
lute target concentrations from fluorescence intensity data and probe sequence
properties we have followed an approach by Hekstra et al. (2003), but have
introduced improvements to reduce bias in the estimators and to enable esti-
mation of confidence intervals. We find that a substantial downward (upward)
bias at high (low) concentrations can be corrected by using an appropriately
defined median over probes within a probeset rather than the mean.

We also find the Langmuir isotherm approach to be an improvement on
existing expression measures such as MAS5 and RMA, both in its ability to
predict absolute rather than relative target concentrations and in its ability
to allow for saturation effects. There may well be useful aspects of existing
expression measures which could be combined with adsorption models to pro-
duce a universal expression measure whose input parameters include probe
sequence properties, and this could be explored.

Appendix: Microarray intensity data and the gamma distribution

Throughout our analysis we have assumed fluorescence intensity data from
olignucleotide data to be drawn from a gamma distribution with constant
shape parameter, or equivalently, with constant coefficient of variation. Here
we give details of the arguments leading to this assumption.

In the Affymetrix HG-U95A Latin square experiment, each intensity mea-
surement at a given target concentration for a given gene g and probe p is
replicated with chips from nwafer = 3 separate wafers w. An estimate of the
coefficient of variation can be obtained by considering the set of quantities

ηpg =

√
Var(ypg)

ȳpg

(16)
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where

ȳpg =

∑nwafer

w=1 ypgw

nwafer

, Var(ypg) =

∑nwafer

w=1 (ypgw − ȳpg)
2

nwafer − 1
, (17)

and ypgw are individual fluorescence intensity measurements. The average over
the 2688 values of ηpg obtained from the PM data for the 12 genes analyzed
in this paper is η̂pg = 0.17. To estimate the variation in η over the range of
intensity measurements we fitted the linear model

log10 η = α+ β log10 ȳ + ε, (18)

obtaining β = 0.080. Over the three orders of magnitude of intensity values
represented this corresponds to a slight upward tendency in the coefficient
of variation from about 0.12 at the lowest intensities to 0.18 at the highest
intensities. We have repeated this analysis for each gene separately and find
that the estimate η̂pg of the coefficient of variation changes little from gene to
gene, staying within the range 0.14 to 0.19 for the 12 genes studied.

Evidence for the choice of a gamma distribution is found in the work of
Dennis and Patil (1984) on stochastic fluctuations of populations about a
stable equilibrium. This work is concerned with dynamic population models
governed by a differential equation of the form

dθ

dt
= θg(θ), (19)

which exhibit a stable equilibrium solution θ̄ satisfying

g(θ̄) = 0, g′(θ̄) < 0. (20)

The adsorption model of Eq. (1) is the specific case of these models with

g(θ) = kf

{x
θ
− (x+K)

}
, (21)

and equilbrium solution given by the Langmuir isotherm θ̄ = x/(x + K).
Dennis and Patil consider in detail a stochastic version of Eq. (19),

dθ

dt
= θ [g(θ) + h(θ)z(t)] , (22)

in which a Gaussian white noise z(t), with variance σ2, times a density depen-
dence h(θ) has been added to g(θ). They further find the probability density
function of the variable θ to be given by (up to normalization)

f(θ) = exp

{
2

σ2

∫ θ

θ̄

g(n)dn

nh2(n)
− 2ω

σ2
log θ − 2ω

σ2
log h(θ)

}
, (23)
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where ω is the “Ito-Stratonovich” parameter determining the stochastic inte-
gral by which the model of Eq. (22) is interpreted. It takes the values

ω =

{
σ2 if Ito calculus is used;
σ2/2 if Stratonovich calculus is used.

(24)

Expanding the terms g(n)/h2(n) and log h(θ) in the integrand of Eq. (23) to
first order in a Taylor series about the stable equilibrium solution θ̄, Dennis
and Patil show that f(θ) is approximately a gamma distribution.

Suppose now that we consider a simple expedient but realistic model h(θ) =
c(kfx/θ)

1/2, where c is constant, so that the stochastic version of Eq. (1) be-
comes

dθ

dt
= kfx(1− θ)− kbθ + c(kfxθ)

1/2z(t), (25)

and the scale of the stochastic noise increases montonically with both the target
concentration and fraction of occupied probes. Then it is straightforward to
show that the distribution in Eq. (23) becomes an exact gamma distribution

f(θ) = ψθν−1e−αθ (26)

where

α =
2(x+K)

c2σ2x
, ν =

2

c2σ2
+ 1− ω

σ2
, (27)

and ψ is a normalization constant ensuring
∫∞

0
f(θ) = 1. Note that the shape

parameter ν is constant with respect to x, ensuring constant coefficient of
variation, and that, if the Ito scheme is used, the mean of the distribution is
ν/α = x/(x+K) = θ̄.

The fluorescence intensity is taken in Section 2 to be the sum of a term
proportional to the fraction θ of occupied probes and a background component
assumed mainly to be due to cross hybridization, which will itself be driven
by a stochastic process similar to that described above.
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