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The problem of inferring accurate quantitative estimates of transcript abundances from gene expression
microarray data is addressed. Particular attention is paid to correcting chip-to-chip variations arising mainly
as a result of unwanted nonspecific background hybridization to give transcript abundances measured in a
common scale. This study verifies and generalizes a model of the mutual dependence between nonspecific
background hybridization and the sensitivity of the specific signal using an approach based on the physical
chemistry of surface hybridization. We have analyzed GeneChip oligonucleotide microarray data taken from
a set of five benchmark experiments including dilution, Latin Square, and “Golden spike” designs. Our analysis
concentrates on the important effect of changes in the unwanted nonspecific background inherent in the
technology due to changes in total RNA target concentration and/or composition. We find that incremental
changes in nonspecific background entail opposite sign incremental changes in the effective specific binding
constant. This effect, which we refer to as the “up-down” effect, results from the subtle interplay of competing
interactions between the probes and specific and nonspecific targets at the chip surface and in bulk solution.
We propose special rules for proper normalization of expression values considering the specifics of the
up-down effect. Particularly for normalization one has to level the expression values of invariant expressed
probes. Existing heuristic normalization techniques which do not exclude absent probes, level intensities
instead of expression values, and/or use low variance criteria for identifying invariant sets of probes lead to
biased results. Strengths and pitfalls of selected normalization methods are discussed. We also find that the
extent of the up-down effect is modified if RNA targets are replaced by DNA targets, in that microarray
sensitivity and specificity are improved via a decrease in nonspecific background, which effectively amplifies
specific binding. The results emphasize the importance of physicochemical approaches for improving heuristic
normalization algorithms to proceed toward quantitative microarray data analysis.

1. Introduction

Gene expression profiling using microarrays has become a
popular technique in molecular biology with a range of
applications that benefit from the large-scale estimation of
transcript abundance.1 This method is based on the hybridization
of labeled RNA prepared from samples of interest with gene-
specific oligonucleotides on the arrays. It estimates the expres-
sion levels of tens of thousands of genes in one measurement,
giving a snapshot of transcriptional activity of a cell at the time
of RNA extraction.

Quantitative and predictive biology requires the ability to
quantify gene expression as absolute transcript abundances, or
relative changes in transcript abundances between treatments,
if functional interactions between genes are to be understood.2

Ideally, the raw data provided by microarrays in the form of
fluorescence intensity measurements must be converted to an
expression measure which is linearly related to transcript
abundance, and which is normalized to a common unit of
measurement to allow for chip-to-chip comparisons. Existing
expression measures, which are predicated primarily on statisti-
cal principles, suffer from a number of shortcomings. In general,

they are scaled in arbitrary units depending on the particular
preprocessing algorithm which corrects raw probe signals for
parasitic effects such as nonspecific hybridization and probe-
specific affinities (see ref 3 for a minireview). Expression values
are related to transcript concentrations, but the mutual depen-
dence is partly nonlinear and the scaling factor context-sensitive.
Common procedures for normalizing expression profiles were
originally developed to measure differential gene expression
between two or more phenotypes. Typically, existing normaliza-
tion methods assume that relatively few transcripts vary or that
any changes that occur are balanced. As a consequence, changes
in expression levels are calculated relative to the behavior of
most of the transcripts. This does not reflect absolute changes
if global shifts in mRNA populations occur.

Moreover, gene expression values are notoriously subject to
high variability resulting in poor scaling of the data. Systematic
biases in the signals of particular genes can have severe effects
on subsequent interpretations. In the context of quantitative
modeling therefore, accuracy (i.e., a small systematic bias) takes
precedence over other considerations such as precision (due to
random scattering) because otherwise it would be impossible
to arrive at accurate parameter estimates such as transcript
degradation rates. Some of the available preprocessing methods
(e.g., RMA,4 vsn5) are optimized for high precision at the
expense of accuracy.

* Corresponding author. E-mail: binder@izbi.uni-leipzig.de. Fax: ++49-
341-9716679.

† Interdisciplinary Centre for Bioinformatics of Leipzig University.
‡ Australian National University.

J. Phys. Chem. B 2009, 113, 2874–28952874

10.1021/jp808118m CCC: $40.75  2009 American Chemical Society
Published on Web 02/09/2009



To overcome these shortcomings, a thorough understanding
of the physicochemical processes involved in microarray
technology is required.8-12 We have recently proposed a new
analysis, called the hook method,8 which enables a linear
estimate of transcript abundances across a single chip. The
method is based on the competitive two-species Langmuir
adsorption isotherm and uses natural-metrics to estimate expres-
sion values of a given array. The hook method accounts for the
nonspecific background due to cross hybridization of parasitic
transcript sequences, for saturation of the probe spots with bound
transcripts and for sequence-specific variations of the binding
constant, and applies appropriate corrections. Here we apply
this method to estimate the degree of specific and of nonspecific
hybridization independently for each investigated chip. These
data are required to study their mutual dependence to develop
appropriate corrections not considered so far.

The purpose of this paper is to tackle the problem of chip-
to-chip normalization, aiming at correcting expression values
for chip-specific biases to enable direct comparison between
chips. The impact of this issue is high because downstream
expression analyses depend sensitively on proper scaling of the
data. Naively one might assume that fixed experimental condi-
tions, such as performing the measurements on the same chip
type with the same preparation protocols, entail invariant binding
constants and thus identical scaling factors of the transcript
concentration. However, the physicochemical theory describing
the subtle interplay of molecular interactions at the chip surface
and in bulk solution predicts that the affinity of the transcripts
for binding to the probes depends on the quantity and particular
composition of RNA targets in the sample.6,7 Thus, the scaling
factor is a sample-specific property, which is expected to vary
from preparation to preparation. A recent analysis of hybridiza-
tion data taken from a special Latin Square spike-in experiment
has confirmed the theory,8 clearly indicating marked changes
of the specific binding constant after addition of a complex RNA
mixture to the samples. Spike-in experiments are model studies
with known transcript concentrations and are very helpful for
studying basic principles of microarray hybridization. The
transformation of these results into analysis algorithms for
typical chip applications with unknown transcript concentrations,
however, requires further efforts.

The remainder of the paper is laid out as follows. Section 2
sets out the physicochemical theory and necessary background
material on the hook-curve method. A description is given of
five benchmark studies, which mimic different experimental
situations ranging from simple dilution of the RNA to the
addition of a complex RNA cocktail which completely changes
background hybridization. In section 3, data from each of the
five studies is analyzed in the light of the theory set out in section
2. The discussion in section 4 formulates the quantitative patterns
observed in the data analysis as a general principle which we
term the “up-down effect”: incremental changes in nonspecific
binding entail incremental opposite sign changes in specific
binding as a result of the interplay of various chemical reactions.
A critique of existing normalization methods is given, and a
set of rules is set out for the proper normalization of expression
values. As a special case we explore the effect of substituting
RNA by DNA targets and discuss how this modification affects
the scaling of expression measures.

2. Theory and Data Analysis

Surface and Bulk Hybridization on Microarrays. Consider
one of the thousands to millions of probe spots on a typical
microarray, which we assume to be independent of one another.

For the description of its hybridization one has to take into
account essentially three reaction partners, the probe oligo-
nucleotides (P) attached on the chip surface, and the specific
(S) and nonspecific (N) polynucleotide transcript fragments in
the supernatant solution which either completely or partially
match the probe sequence, respectively. We consider the
following chemical reactions: unimolecular folding (P-fold,
S-fold, and N-fold) and pairwise-bimolecular dimerization (P-S,
P-N, N-N, S-S, S-N).7-10 We neglect P-P dimerization.
Under equilibrium conditions, the occupancy of the probe
oligonucleotides with specific and nonspecific transcripts is
governed by the effective binding constants of specific and
nonspecific hybridization

respectively.7 The effective “overall” constants are functions
of the individual equilibrium constants of the reactions intro-
duced above as indicated by the respective superscript of the
K’s on the right-hand side of the equations. The total concentra-
tions of specific and nonspecific transcripts are denoted by [S]
and [N], respectively, where all target sequences not comple-
mentary to the specific probe sequence are assumed to be
represented by a single effective species N. Equation 1 simplifies
to

in the reasonable limit of negligible bulk hybridization due to
specific transcripts (KS-S[S], KS-N[S] , 1). The effective
equilibrium constants of specific (h ) S) and nonspecific (h )
N) hybridization, KA

h and KB
h , are directly related to the

dimerization constants of the respective reaction on the chip
surface (subscript A) and in the bulk supernatant solution
(subscript B). The folding reactions are inversely related to the
effective constant of the respective reaction. Note that the folding
and bulk-dimerization reactions reduce the concentration of free
specific transcripts and this way decrease the overall specific
hybridization constant compared with the respective surface and
bimolecular constants, i.e., KS e KA

S e KP-S. Bulk dimerization
thus predicts the decrease of KN and KS with increasing
concentration of nonspecific transcripts.

The product of binding constant and total concentration of
the respective reacting species defines the so-called binding
strength. The total binding strengths XS and XN can be written
as hyperbolic functions of the surface binding strength for
nonspecific hybridization XA

N

KS ≈ KP-S(1 + KP-fold)-1

(1 + KS-fold + KS-N[N] + √KS-S[S])
and

KN ≈ KP-N(1 + KP-fold)-1

(1 + KN-fold + KS-N[S] + KN-N[N])
(1)

Kh ≈
KA

h

1 + KB
h [N]

with h ) S, N

KA
h ) KP-h

(1 + KP-fold)(1 + Kh-fold)
,

KB
h ) Kh-N

(1 + Kh-fold)
(2)
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The scaling factor Xh
∞ is defined as the ratio of the nonspecific

surface constant to the respective bulk constant. For h ) N it
specifies the limiting value of the binding strength at infinite
background concentration (and binding strength), XN|[N]f∞ )
X∞

N. The specific binding strength vanishes under these condi-
tions, i.e., XS|[N]f∞ ) 0.

The behavior of the binding strength for specific binding upon
changing [N] depends on the relation between the concentrations
of specific and nonspecific targets, [S] and [N]. Let us introduce
the S/N ratio as the ratio of the specific and nonspecific binding
strengths

Equation 4 shows that the S/N ratio of the surface reactions,
RA, is scaled nonlinearly by the binding strength of nonspecific
surface hybridization, XA

N.
Special Classes of Probes. Microarray probes are designed

to detect specific transcripts via dimerization and optical
labeling. One can classify the probes of a chip according to
different criteria, for example, in relation to the abundance of
the specific transcripts [S] which they are intended to estimate
in a series of at least two hybridizations:

(i) “Invariant-expressed” (or “control” probes) probes refer-
ring to an invariant concentration of specific transcripts, i.e.,
[S] ) const > 0. Equation 4 applies with XA

S ) const. to these
probes. The increment of the specific binding strength between
the samples is δ log XS ) δ log KS.

(ii) “Differentially-expressed” probes referring to a variable
concentration of specific transcripts, i.e. [S] ) var > 0. The change
of the binding strength is δ log XS ) δ log KS + δ log[S].

(iii) “Dilution” probes are a special case of “invariant-
expressed” probes referring to a constant concentration ratio of
specific and nonspecific transcripts, i.e., [S]/[N] ) const. and
RA) const in eq 4. The latter condition provides δRA )
(δ ln XA

S - δ ln XA
N)RA ) 0 and thus δ log XA

S ) δ log XA
N.

(iv) “Empty” (invariant, not expressed) probes with absent
specific transcripts [S] ) 0 in all preparations.

The respective conditions are realized in special benchmark
experiments of the dilution or spike-in design. In the dilution
experiment a complex RNA mixture is hybridized to a series
of chips in different concentrations, thus leaving the concentra-
tion ratio [S]/[N] constant. In the spike-in experiments, tran-
scripts referring to selected probes are added in definite
concentrations into the hybridization solution. We refer to these
probes as “spiked” probes or “spikes”. If no other transcripts
are added then the remaining “nonspiked” probes are empty
probes. One can, however, add a complex RNA mixture to the
hybridization solution containing the spikes to mimic the
nonspecific background. In this case, the nonspiked probes are

either invariant-expressed or empty probes with respect to the
abundance of the respective specific transcripts.

In general, all the experimental conditions comprise the variation
of the amount of nonspecific transcripts, [N] ) var, between the
preparations. The respective increment of the nonspecific binding
strength is δ log XN ) δ log KN + δ log[N]. Spike-in experiments
of the Latin-square design ensure [N] ≈ const and thus δ log[N]
≈ 0 to minimize the interference between changing nonspecific
and specific hybridization (see below).

Our classification of probes so far relies on the “true” abundance
of specific transcripts which is known in the benchmark experi-
ments. An alternative classification is based on the decision whether
a probe detects specific transcripts or not, i.e., whether the specific
probe signal is beyond the detection limit of the method or not.
The respective probes are called present or absent by accepted
convention originally introduced by Affymetrix.11 In the present
context we will neglect false negative (e.g., expressed but absent
due to small transcript concentrations) and false positive (e.g., not
expressed but present due to strong cross hybridization) measure-
ments and consider the paired terms “expressed”/“present” and
“empty”/“absent” as synonyms.

Correction for Bulk Hybridization. The signal intensities
of the probe spots measured in the microarray experiment are
governed by the binding strengths for both specific and nonspecific
binding.3,9 Appropriate analysis allows separation of the two
contributions (see below). The obtained estimate of the specific
binding strength represents a relative measure of transcript abun-
dance scaled by the effective binding constant for specific
hybridization (see eq 3). In the previous section, we showed that
the probe-specific scaling factor KS, however, is not a constant but
it depends on the binding strength of nonspecific hybridization
owing to bulk reactions. Such bulk effects can vary from experi-
ment to experiment and from probe to probe because the level of
nonspecific background usually depends in a sequence-dependent
fashion on the particular preparation.

On the other hand, the respective surface binding constant KA
S

is independent of bulk effects. The surface binding strength XA
S

thus represents a better choice for comparing expression values
between different samples and hybridization conditions because it
scales with the specific transcript concentration independently of
the background hybridization. In the next step, we therefore
rearrange eq 3 to express the surface binding strength as a function
of the effective nonspecific binding strength, XN, which in turn
can be estimated from the chip data (see below):

Here CS and CN are the correction factors transforming the
(hybridization dependent) overall binding strengths into the respec-
tive (hybridization independent) binding strength of surface hy-
bridization, which refers to the overall binding strength in the
absence of nonspecific background hybridization.

Let us assume for the sake of convenience X∞ ) XN
∞ ≈ XS

∞
and thus C ) CS ) CN (see eq 5), or equivalently KS-N ≈ KN-N

and KS-fold ≈ KN-fold, i.e., similar bulk dimerization and folding
constants for specific and nonspecific transcripts (see eq 3).

Xh ≡ Kh[h] ≈
XA

h

1 + XA
N/X∞

h

with XA
h ≡ KA

h [h] and

X∞
h ≡

KA
N

KB
h
) KP-N

Kh-N(1 + KP-fold)

(1 + Kh-fold)

(1 + KN-fold)
(3)

R ≡ XS

XN
) KS

KN

[S]
[N]

≈ RA

1 + XA
N/X∞

N

1 + XA
N/X∞

S
where RA ≡

XA
S

XA
N

(4)

XA
h ) XhCh with h ) N, S;

CN ≡ 1

1 - XN/X∞
N

and

CS ≡ (1 +
XN/X∞

S

1 - XN/X∞
N) ) CN(1 - XN(1/X∞

N - 1/X∞
S ))

(5)
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To estimate C we make use of the special classes of probes
defined in the previous section:

(i) Invariant-present probes with constant abundance of the
respective transcripts in a series of hybridizations, i.e., XA

S ≈
CXS ≈ const (see (i) above). For the simplest experimental
design of two groups referring, e.g., to a reference (#r) and
treatment (#t) preparations we get from eq 5 and the condition
XA

S (#r) ) XA
S (#t)

with

δ log XN ≡ log(XN(#t)

XN(#r)) > 0 and

δ log XS ≡ log(XS(#t)

XS(#r)) < 0

The opposite sign of δ log XN and δ log XS is chosen in
accordance with eq 3, which predicts that the increase of [N]
(and of XN) is paralleled by the decrease of KS (and XS) and
vice versa. We will refer to these opposite changes of
nonspecific and specific hybridizations as the “up-down effect”.
Note that for the invariant-present probes we have δ log XS )
δ log KS ≡ log(KS(#t)/KS(#r)); i.e., the change of the specific
binding strength is completely given by the change the respective
binding constant (see above).

After insertion of eq 6 into eq 5 we get the correction factors
for the preparations #r and #t to adjust the specific binding strength

Bulk hybridization reduces the effective binding strength of
specific binding (XA

S g XS). Both correction factors therefore
adopt values greater than unity. They are simply related to the
asymptotic and the actual values of the nonspecific binding
strength (see eq 7). Figure 1 shows that C(#r) and C(#t) change
nonlinearly with the log-difference of the signals, δ log XS. The
inverse relation between the correction factors and δ log XN

can be rationalized by the trend that a larger change of XN at δ
log KS ) const implies the smaller effect of bulk hybridization
and thus the smaller value of the correction factor. The
correction becomes linear in the limit δ log XN f ∞: In this
situation the signals are scaled by the ratio of the specific binding
constants C(#t) ) KS(#t)/KS(#r) ) const and C(#r) ) 1. The
correction trivially vanishes in the limit δ log KSf 0 (C(#r) )
C(#t) ) 1).

(ii) “Spiked” probes are suited for background correction if
one knows the nominal concentration change, δ log[S] )
log[S](#t) s log[S](#r) and the increment of the binding
strength. Then eq 7 applies with δ log KS replaced with δ log
XS - δ log[S].

(iii) For “dilution” probes, eq 4 provides RA ≈ R ) const in
the limit of the approximation X∞

N ≈ X∞
S . The S/N ratio of the

total and of the surface binding strengths is consequently
invariant for these probes which are therefore not suited for
estimating the scaling coefficient C.

(iv) The intensity signal of invariant-absent probes is solely
determined by nonspecific hybridization. These probes therefore
potentially provide information about the change of background
hybridization between the samples, δ log XN, used in eq 7 (see
below).

Hook Analysis. The correction factor requires the determi-
nation of the specific and nonspecific binding strengths for the
selected probes in each of the considered preparations (see eq
7). For this task we make use of the so-called hook method
(see refs 3, 12, and 13 for a detailed description; a brief summary
is given as Supporting Information) which applies to microarrays
of the GeneChip-type containing pairs of perfect match (PM)
and mismatch (MM) probes to estimate the abundance of each
transcript. Importantly, this method estimates the required
characteristics without using any explicit concentration depen-
dence of selected transcripts (as, for example, realized in spiked-
in experiments). Instead, the method uses the mismatched probes
as an internal reference for each PM probe to estimate its
occupancy by bound transcripts. The hook method transforms
the PM and MM probe intensities (IPM and IMM, respectively)
to two new coordinates, (∆, Σ), defined by

Subsequent smoothing and correction for sequence-specific
effects provides the so-called hook curve in ∆ vs Σ coordinates.
The mean nonspecific binding strength of the particular hybrid-
ization is simply given by the width of the hook curve, � ≈ -
log XPM,N (one value per chip, see also panel b of Figure 2 for
illustration). In the final step of the hook analysis the sequence-
corrected probe-level intensity data are corrected for the
nonspecific background, for sequence-specific effects, and for
saturation and then summarized for each probe set to get one
transcript-related estimate of the specific binding strength,
log XS, as the second input values required in eq 7 (one value
per transcript). In addition, the method provides a “detection
call” per transcript; i.e., it estimates whether the intensity of
the transcript-specific intensity is beyond the detection limit or

X∞
N ) XN(#r)

(10δlog XN
- 10δlog XS

)

(1 - 10δlog XS
)

(6)

C(#r) ≡
X∞

N

X∞
N - XN(#r)

) 10δlog XN
- 10δlog KS

10δlog XN
- 1

g 1 and

C(#t) ≡
X∞

N

X∞
N - XN(#t)

) 10-δlog KS
C(#r) g 1 (7)

Figure 1. Correction factors C(#r) (thick lines) and C(#t) (thin lines)
as a function of the log-difference of the specific signal at different
log increments of the nonspecific background level. The curves are
calculated using eq 7 which assumes the nonlinear scaling of the signal
due to bulk hybridization (see eq 3).

∆ ) log IPM - log IMM, Σ ) 1
2

〈log IPM + log IMM〉 set

(8)

Scaling of Microarray Expression Estimates J. Phys. Chem. B, Vol. 113, No. 9, 2009 2877



not. The total fraction of not-detectable transcripts per chips is
given as “percent-absent probes” (%N).

Comparison of the Hook Coordinates. The proposed
rescaling approach of correcting the specific binding strength
for bulk effects relies on the comparison of at least two
experimental conditions of the type treatment vs reference, #t
and #r, each of which provides one hook curve. Moreover, each
probe set is characterized by its hook-co ordinates (Σ, ∆) which
can be compared between both samples to evaluate the
increment of the binding constants by visual inspection. Dif-
ferentiation of the hook equation (see the Supporting Informa-
tion) provides the increments of the ∆ and Σ coordinates as a
function of the parameter increments δR (increment of the S/N
ratio, see eq 4) and δ� (increment of the width of the hook
curve as a measure of the nonspecific binding strength, see eq
6) in the linear hybridization range (BPM ≈ BMM≈1)

with

d∆ ) 1 - 10-R

�(R2)
∝ 1

�(R2)
,

dΣ )
R ·10-R + 1

2
(1 + 10-R)

�(R2)
≈

R ·10-R

�(R2)
+ 1

2
d∆ ∝

R ·10-R + 1
2

�(R2)

�(R2) ) (ln 10)-1(R ·10-R + 1)(R + 1)

The parameter R specifies the vertical height of the hook in
the absence of saturation. Equation 9 implies, for example, δ∆
) 0 for δR ) 0. In other words, dilution probes are expected
to possess invariant ∆-coordinates upon invariant binding

constants (see eq 4). The horizontal shift between the compared
hooks is given by the change of the nonspecific background
level, δΣ ≈ δ� ) -δ log XN.

With δR ln 10 ) (δ log XS - δ log XN)R ) (δ log XS +
δ�)R and δ log XS ) 0, one gets from eq 9

the variation of the hook coordinates owing to the change of
the nonspecific background under the assumption of invariant
specific binding strength.

Banana-Plot Analysis. The hook plot of the PM and MM
intensities represents a special variant of a difference vs sum
presentation of paired data. Alternatively, one can plot the paired
intensity data taken from two experimental conditions of the
treatment vs reference design in a similar fashion using the so-
called M vs A plot with the coordinates

The probe intensities are hyperbolic functions of the total
binding strength X according to the two-species Langmuir model
(see, e.g., refs 9, 10, 12, and 14):

and

Figure 2. Hook analysis of the dilution experiment: the hybridization regimes (N, mix, S, and sat)) are indicated in part a. Only the hooks of the
smallest and largest dilution steps are shown (see ref 13 for the full set of curves). The increasing part of the hook curve shifts to the left by the
increment δ� upon dilution of the sample from 20 to 1.25 µg of added RNA. The width of the curve, �, is related to the nonspecific binding
strength and thus to the degree of dilution. The curved lines are fits of the hook equation (see Supporting Information and ref 12). The right axis
in panel a refers to the frequency distributions which are calculated for the highest and lowest dilution steps. The dotted lines are exponential
decays with the decay rate λ given in the figure. Panel b of the figure shows the respective theoretical curves with horizontal lines referring to
invariant S/N ratios R ) const (thin dotted lines). The open triangles are the positions of selected dilution probe sets in both dilution steps which
clearly indicate the slight increase of R with increasing amount of RNA. The solid triangles refer to a control probe set which is spiked in equal
concentrations to the samples.

δ∆ ≡ ∆(#t) - ∆(#r) ≈ d∆δR

δΣ ≡ Σ(#t) - Σ(#r) ≈ -δ� + dΣδR (9)

δ∆(R) ≈ (ln 10)-1d∆δ�R

δΣ(R) ≈ -δ�(1 - (ln 10)-1dΣR) (10)

M ≡ 〈log IPM(#t) - log IPM(#r)〉 set

A ≡ 1
2

〈(log IPM(#t) + log IPM(#r))〉 set (11)

IPM(#i) ) ImaxX(#i)/(1 + X(#i)) with i ) r, t

X(#t) ) XN(#t)(R + 1) (12)
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X(#r) ) XN(#t)(R/10δlog XS
+ 1/10δlog XN

)

R ≡ XS(#t)

XN(#t)

Insertion of eq 12 into eq 11 provides an analogous equation
with the hook equation (see Supporting Information)

with the saturation terms (B#t(R) ) 1 + 10-(�′-(1)/(2)Mstart)(R + 1)
and B#r(R) ) 1 + 10-(�′+(1)/(2)Mstart)(R ·10-R′ + 1), and the
parameters

Most importantly, the “vertical” coordinate of the starting
point M(0) thus provides the increment of the nonspecific
binding strength whereas the vertical dimension R′ of the graph
in addition depends on the increment of the specific binding
strength.

Note that M(0) can be estimated using empty probes, the
intensity of which is exclusively determined by nonspecific
hybridization. For illustration, let us also examine the course
of the M-A plot for invariant-expressed probes with nonneg-
ligible increment of the nonspecific binding strength between
the two conditions owing to the up-down effect, i.e., δ log XN

> 0 and δ log XS < 0 (see for illustration Figures 12 and 13 in
the Discussion section). The respective M-A plot starts at
positive M(0), turns with increasing A to smaller, possibly even
negative M values (note that R′ defines the maximum possible
vertical difference with respect to M(0)) and finally levels off
toward the ordinate under the assumption of equal asymptotic
intensity values Σ(∞) of both measurements. This behavior
resembles the banana-like shape of M-A plots known from
numerous chip data analyses.

Benchmark Data. In this study we analyzed the following
benchmark data sets:

(a) Dilution-data set taken from the Genelogic dilution
experiment:15,16

In this experiment cRNA extracted from human liver tissue
was hybridized on HG-U95 GeneChips in various dilutions
using 1.25, 2.5, 5.0, 7.5, 10.0, or 20.0 µg. Selected transcripts
of bacterial RNA for hybridization control were added to all
samples in equal concentrations. Each condition was realized
in five replicates.

(b) LS-BG and LS+BG data sets taken from the Affymetrix
U95 Latin square spike-in experiments with and without
nonspecific background:17,8

This spiked experiment was designed to study the intensity
response of selected probe sets to changes of the respective
transcript concentrations. In total 14 transcripts are spiked at
14 concentrations (0, 0.25, 0.5,..., 1024 pM) using a cyclic Latin-

square design to ensure a constant total concentration of the
spikes (2.05 nM) in each hybridization. The experiment was
performed in two modifications, namely, without and with the
addition of background. In the latter case a complex cRNA
mixture extracted from human pancreas was added in equal
amounts to each of the samples to mimic background hybridiza-
tion. Each hybridization condition was realized in triplicate.

(c) GS-data set taken from the Golden spike experiment:18

This large-scale spike experiment mimics a treatment vs
reference group scenario to identify genes which are differen-
tially expressed. PCR products from Drosophila Gene Collection
were hybridized in different amounts onto Drosophila DrosGe-
nome1 GeneChip arrays in triplicate for each group. Particularly,
a total of 3860 individual cRNAs were divided into “invariant
present” (2551) and “differentially expressed” (1309) sets. The
latter sets were spiked in with differing concentrations between
the “treatment” and “reference” samples whereas the former
sets are present at identical concentration in each sample. The
amount of cRNA material used for hybridization was 3.23 µg
(referring to invariant present probes) and 5.38 µg (differentially
expressed probes) in both the reference and treatment samples,
and additionally 7.93 µg (differentially expressed probes) in the
treatment sample. In total, the reference and treatment samples
contain 8.97 and 16.54 µg cRNA, respectively. Out of the 14 116
probe sets on the Drosophila DrosGenome1 array, 10 131 probe
sets are called “empty” (nonspikes) because they are not
assigned to any of the added cRNA spikes. In addition, 20 µg
of unlabeled poly-C RNA was added to the reference sample
to adapt the amount of RNA to that of the treatment sample.

(d) RNA/DNA data set taken from the DNA/RNA spike
experiment:19

This experiment uses a baseline RNA specimen extracted
from a human T-cell leukemia-derived Jurkat cell line with or
without an added set of spikes comprising hemoglobin tran-
scripts HbA1, HbA2, and HbB. The experiment was performed
in two modifications (each in triplicate), using either the standard
in vitro transcription protocol to produce cRNA targets or using
an isothermal protocol to produce cDNA targets (see ref 19 and
references cited therein). The cRNA and cDNA sample solutions
of nominally identical composition were hybridized onto human
genome HG-U133 2.0 arrays with 22 277 probe sets, nine of
which were intended to detect the spikes.

3. Results

Benchmark Experiments with Variable Nonspecific Back-
ground. In this study, we analyze microarray data taken from
five benchmark experiments to investigate the effect of changing
nonspecific “background” level on the specific binding constant
which scales the expression degree. Table 1 summarizes and
compares selected array and sample characteristics of these
experiments which are described below. A schematic overview
of the essential components contributing to the respective probe
signal is given in the Supporting Information.

In the experiments of the spiked-in with complex background-
type, a limited number of transcripts (the “spikes”) matching
selected probes (the “spike probes”) were mixed with a complex
RNA cocktail of unspecified composition and subsequently
hybridized onto microarrays using a Latin-square design to
ensure a constant total concentration of the spikes in all
preparations. Each spike constitutes the specific transcript of
concentration [S]sp which binds to the respective spike probe
with binding strength Xsp

S ) Ksp
S[S]sp.. Each spiked transcript

also constitutes a nonspecific transcript for all other probes not
matching its sequence. Our model pools all not-matching spikes

M(R) ) Mstart + log{ (R + 1)

(R ·10-R′ + 1)} - log{ B#t(R)

B#r(R)}
and

A(R) ) Astart + 1
2

log{(R + 1)(R ·10-R′ + 1)} -

1
2

log{B#t(R)B#r(R)} (13)

R′ ) δ log XS - δ log XN, �′ ) 1
2

δ log XN - log XN(#r)

and
Mstart ≈ M(0) ) δ log XN, Astart ≈ A(0) ) A(∞) - �′

(14)
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into one effective species which binds to a selected probe in a
sequence-specific fashion with the mean binding strength Xsp

N

) KN[N]sp. Also the transcripts of the complex background split
into specific and nonspecific ones depending on whether a probe
matches their sequence or not. The respective binding strengths
are Xbg

S ) Kbg
S [S]bg and Xbg

N ) KN[N]bg, respectively. The
nonspecific contributions add together giving rise to the overall
nonspecific, probe-specific binding strength XN ) 〈Xsp

N + Xbg
N 〉N

where the angular brackets denote averaging over all relevant
nonspecific fragments. The total binding strength combines the
specific and nonspecific contribution, i.e., Xsp ) Xsp

S + XN for
the spike probes and Xbg ) Xbg

S + XN for the remaining nonspike
probes. The intensity of the probes is given to a good
approximation by the Langmuir adsorption model which predicts
the hyperbolic function9,10,14

The maximum intensity at saturation, Imax, is approximated
as a common constant for all probes of the chip. In general,
Imax is a probe-specific value because of post-hybridization
washing of the microarrays which removes less strongly bound
MM probes more efficiently than the PM. Preliminary results
on the effect of washing, however, show that this effect is
relatively weak and eq 15 well approximates the intensity
response of the probes in the relevant range of transcript
concentrations.

The studied microarrays of the GeneChip-type use perfect
match (PM) and mismatch (MM) probes. Each MM possesses
a reduced specific binding strength compared with the respective
PM owing to the mismatched middle base. The joint processing
of both intensities allows us to judge the presence of the

respective specific transcript in the studied sample using
algorithms such as MAS511 or hook which use the MM as an
internal reference for the PM (see above). Abundant transcripts
with specific binding strengths exceeding a certain detection
limit which is comparable in magnitude with the respective
background contribution, i.e., XS > XN, are usually called present
(and absent otherwise).

The spiked without background Latin square experiment
exactly reruns the “spiked with background” experiment,
however, without addition of the complex RNA mixture. As a
consequence, the respective mean nonspecific binding strength
considerably decreases by the factor 0.5 (10log(0.5)) and nearly
all nonspiked probes are detected absent: The absent rate is 41%
in experiments with the complex background, and greater than
98% in those without (see Table 1 and the respective scheme
in the Supporting Information). Cross hybridization of the spikes
to most of the nonspike probes can be virtually neglected in
this special case.

In the benchmark experiments the concentration and/or
concentration changes of selected transcripts in the different
preparations are explicitly known and can be used to study
methodical issues. For the two types of spiked experiments,
comparing the specific binding strength of the spiked probes
referring to transcripts of the same concentration in both
preparations enables us to study the effect of the nonspecific
background level on the specific binding constant. These spiked
probes of constant specific transcript concentration in both
preparations are designated “invariant-expressed” probes (see
the section 2).

The Golden spike experiment provides another, alternative
access to study the relation between nonspecific and specific
hybridization: It is designed in analogy with the Latin-square
spike-in experiment without complex background. The number
of spikes is, however, markedly increased from about a dozen

TABLE 1: Chip, Sample, and Hybridization Characteristics of the Benchmark Experiments

experiment dilution Latin-square Golden spike RNA/DNA spike

-BG +BG RNA DNA

designa dilution Latin-square treat vs ref treat vs ref treat vs ref

this study - #r #t #r #t #r #t #r #t

Array Characteristics
chip HGU95A DrosGenome 1 HG133A2.0
# psets 12626 14010 22277
Sample Characteristics
complex BG yes no yes no yes
no. spikes <10 14 14 3860 9 9
no. diff-expr. ∼7000 ∼3000 1309 9 9
no. inv-expr. <10 14 2551 ∼17000 ∼17000
no. emptyb ∼5000 ∼12500 ∼9500 10131 ∼5000 ∼5000
RNA/µgc 1.25 -

20
<1 µg (spikes)d 8.97 +

20e
16.54 not specified

Hybridization Characteristics
PM/MM gain (log s) 1.0 (

0.05
0.89 (

0.04
0.89 (

0.04
1.09 (

0.02
1.05 (

0.03
1.12 (

0.03
1.05 (

0.02
0.95 (

0.03
0.93 (

0.03
% N (absent probes) 41 ( 5 >98 75 ( 10 72 ( 2 74 ( 2 24 ( 2 33 ( 2 22 ( 1 23 ( 2
log X∞

N -2.2 -2.4 ( 0.1 -1.6 ( 0.05 -2.7 ( 0.05 -2.8 ( 0.05
log XN(#r) <-2.2 -3.0 ( 0.1 -2.4 ( 0.05 -3.0 ( 0.05 -3.0 ( 0.05
δ log XN +0.5 ( 0.1 +0.25 ( 0.05 +0.2 ( 0.05 0.03 ( 0.05
δ log KS -0.7 ( 0.2 -0.07 ( 0.05 -0.3 ( 0.05 -0.06 ( 0.05
C(#t)/C(#r) 3-8 1.1 2 1.1

a Dilution experiment (Dil), Latin-square (LS), treatment vs reference (#t vs #r). b Invariant spikes are added in equal concentrations to the
#r and #t samples whereas the concentration of the variable spikes is changed. c The hybridization volume is 220 µL; the amount of RNA thus
refers to concentrations in the range of 5 pg/µL (1 µg) to 90 pg/µL (20 µg). d The total concentration of spikes is 2.05 nM. e 20 µg of
unlabeled poly-C RNA was added to the #r sample.

Ip ) Imax

Xp

1 + Xp
with p ) sp, bg (15)

2880 J. Phys. Chem. B, Vol. 113, No. 9, 2009 Binder et al.



to nearly 4000 (see Table 1) and, moreover, the concentration
of more than a thousand of these are, on average, doubled in
the “treatment” preparation. This considerable increase of the
amount of hybridized RNA is expected to change the degree
of nonspecific cross hybridization which, in turn, potentially
affects the specific binding strength. The invariant-expressed
spikes in both preparations allow direct analysis of this effect.

The DNA/RNA spike-in experiment uses a complex back-
ground mixture and a few spikes which are added in relatively
high amounts to the “treatment” samples, potentially modifying
the nonspecific background level compared with the reference
samples without the spikes (see below). Invariant-expressed
probes can be recruited from the nonspiked probes because of
the constant amount of added background-RNA. This experi-
ment attracts special interest because it has been realized in two
virtually identical modifications using either cRNA or cDNA
targets. These different chemical entities give rise to different
interactions at the chip surface (DNA/RNA vs DNA/DNA) and
in the bulk solution (RNA/RNA vs DNA/DNA) with different
binding constants which us enable to study the resulting
consequences for specific and nonspecific hybridizations.

In the dilution experiment an RNA mixture of constant
composition is diluted in six steps. Selected spike controls (e.g.,
BioB controls) are added to all samples in equal amounts, so
providing a set of invariant-expressed probes. This type of
experiment allows us to study how the specific and nonspecific
signals depend on the amount of added RNA, and to compare
with the respective theoretical predictions.

Dilution Experiment. In the dilution experiment the total
RNA concentration is changed in a series of hybridizations.
Figure 2 shows the smoothed plot of the sensitivity-corrected
PM and MM probe intensities of four dilution steps in ∆ vs Σ
coordinates (see eq 8). We called this presentation hook curve
because of the characteristic shape of the resulting graphs. It
can be interpreted in terms of different hybridization regimes:
the curve “starts” at small abscissa values with the N range of
almost exclusively nonspecifically hybridized probes followed
the mix range of steep positive slope. A breakpoint in the course
of the curve separates the N and mix range. The amount of

probes in the former range defines the fraction of absent probes
because their signal is only weakly affected by specific
hybridization. The increasing part of the hook curve reflects
the progressively increasing fraction of specific hybridization
contributing to the intensity of the respective probes. The hook
curve reaches its maximum in the S range where the probes
become predominantly hybridized with specific transcripts.
Subsequently, the curve starts to decrease owing to the onset
of saturation (sat. range).

The essential characteristics of this curve can be well fitted
using the competitive two-species Langmuir isotherm which
predicts the “parabola-like” graphs shown in Figure 2 (see
Supporting Information and ref 12): The hook curve spans a
certain width between its start and end points, � ) Σ(∞) - Σ(0),
which estimates the mean binding strength of nonspecific
hybridization of the chosen chip (see Figure 2 and ref 12).

Figure 2 shows that dilution essentially broadens the hook
curves. This trend trivially reflects the decreasing extent of
nonspecific binding upon dilution (see eq 9). It results exclu-
sively from the shift of the increasing part and of the start point
toward smaller abscissa values at virtually invariant position
of the end point, which reflects a constant saturation intensity
of the probes in the series of measurements.

In part a of Figure 3 we plot XN and XS as functions of the
diluted mass of RNA in solution in µg, mRNA. This diluted mass
is directly proportional to both the nonspecific transcript
concentration [N] and the specific transcript concentration [S]
for noncontrol probes. For XN, the theory predicts the hyperbolic
function (see eq 3 with h ) N)

where a denotes the proportionality constant linking mRNA with
XA

N ) KA
N[N]. This function describes well the experimental data

with the asymptotic nonspecific binding strength log(X∞
N) ≈

-2.5, or X∞
N ≈ 3 × 10-3 (see the full circles in Figure 3). The

negative deviation of XN from the linear increase indicates the

Figure 3. Nonspecific and specific binding strengths as a function of the amount of added RNA in the dilution experiment (part a): XN was
estimated from the width of the hook curves (solid circles). Three options are used to estimate XS as the mean value over a selection of 294 dilution
probe sets with S/N ratios 7 < R < 13 in the first dilution step (open triangles, selections from other R intervals provide virtually identical results);
using the decay constants of the frequency distributions, XS ) λXN (squares); and using the control probe (AFFX-BioC-3_at, solid triangles). The
curves are theoretical functions using eqs 16 and 17 (see text). Part b compares the binding strengths of the nonspecific background and of the
dilution and control probe sets at two dilution steps. Note that XN and XS of the dilution probes increase with increasing concentration of RNA
whereas XS of the invariant expressed control probes decreases (see bars). Correction for bulk hybridization (eq 7) increases the specific (crosses)
and background (blue horizontal line) binding strengths.

XN )
amRNA

1 + amRNA/X∞
N

with a ∝ KA
N (16)
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decrease of KN with increasing amount of RNA owing to bulk
hybridization which effectively decreases the available concen-
tration of free transcripts.

Equation 3 (with h ) S) predicts the specific binding strength
for the special case of dilution ([S] ∝ mRNA) and invariant-
expressed control ([S] ≈ const) probes

where RA is defined in eq 4. Figure 3 compares experimental
XS data for selected dilution (open triangles) and control (solid
triangles) probe sets with the theoretical curves. A group of
294 dilution probe sets was selected with S/N ratios 7 < R < 15
and a mean < R > ) 9.3 in the first dilution step (mRNA ) 20
µg). Their specific binding strength is estimated using the hook
method (see Analysis section) and log-averaged. The obtained
mean values follow essentially a hyperbolic function of the same
curvature as that for the respective XN data which justifies the
relation log(X∞

S) ≈ log(X∞
N) in a first-order approximation

(compare eqs 16 and 17). This result is further confirmed by
the invariant-expressed control probes, the specific binding
strength of which decreases with increasing amount of RNA
owing to the depletion of free specific transcripts (solid triangles
in Figure 3).

Figure 2 (part a) also shows the frequency density of data
points with respect to the Σ coordinate. The right flank of the
distributions can be approximated by an exponential decay law
as indicated by the dotted lines. Its slope defines the decay
constant λ referring to the decrease of the density by 1 order of
magnitude.12 It can be interpreted as the mean S/N ratio of each
hybridization. It provides an estimate of the mean specific
binding strength of all dilution probes 〈XS〉dilution probes ≈ λXN.
These data agree well with the predicted function (see open
squares in part a of Figure 3).

Detailed inspection shows that the λ values decrease slightly
by about 20% from λ ) 0.55 to 0.45 in the considered dilution
range (see part a of Figure 2). This change of the mean S/N
ratio indicates subtle differences between the asymptotic binding
strengths X∞

N and X∞
S and/or the variation of the S/N ratio of

surface hybridization, RA ) var. Note that X∞
N ) X∞

S , RA ) const,
and [S]/[N] ) const predict R ) const and λ ) const upon
varying [RNA] and mRNA (see eqs 4, 16, and 17).

To demonstrate further the change of the S/N ratio upon
dilution we compare the position of the mean hook coordinates
averaged over sets of dilution probes referring to S/N ratios 1
< R < 3 (1199 probe sets, weak expressed probes), 7 < R < 13
(294 probe sets, medium expressed probes) and 15 < R < 25
(102 probe sets, highly expressed probes) respectively (see part
b of Figure 2). For R ) const one expects invariant ∆-coordi-
nates (i.e., δ∆ ) 0 for δR ) 0, see eq 9), i.e. the respective
data points are predicted to align horizontally between both hook
curves. The results, however, indicate the decrease of R upon
dilution by 20-30% in agreement with the respective change
of λ.

Note that our approximation (eq 2) explicitly neglects bulk
dimerization of the specific transcripts. This reaction is expected
to affect the nonspecific binding constant KN (∼1/[S]) more
strongly than KS ((∼1/([S])0.5) upon changing [S] (see eq 1)

which possibly explains the observed change of the S/N-ratio.
The dotted curves in Figure 2 (part b) refer to the variation of
X∞

N by (10%. They illustrate that the consequence is relatively
small and therefore application of the proposed approximation
seems justified.

Part b of Figure 3 summarizes the essential results of our analysis
of the dilution experiment in terms of the comparison of two
experimental conditions in a treatment vs reference design (20 µg
vs 1.25 µg). The N-binding strength and the S-binding strength of
the dilution probes increase with increasing RNA amount whereas
the S-binding strength of the invariant-expressed control probe
decreases. These opposite changes reflect the up-down effect, i.e.,
the decrease of KS upon increasing nonspecific background due to
bulk hybridization which is predicted theoretically (see eq 2). The
increments of the binding strengths between both preparations
provide the limiting value of the N-binding strength, XN|[N]f∞ )
X∞

N, which enables calculation of corrected values of the specific
binding strength referring to the absence of bulk hybridization, or
alternatively, to the respective surface binding strength, XS|[N]f0 )
XA

S. The values of both, X∞
N and XA

S, exceed the respective actual
values of the total binding strengths, XN and XS, respectively.

Latin-Square Experiment. Figure 4 (part a) shows the hook
curves of microarray data taken from the Latin-square spike-in
experiment with and without complex background. The hook
of each of these experiments was calculated in two versions
using either the nonspiked probes (thick curves, taken from one
chip of this series) or the spikes only (open circles, taken from
all chips of the respective series).

The addition of complex background increases the amount
of total RNA in the sample. As for the dilution series, this
change shifts the increasing part of the hook curve to the right
toward larger abscissa values at virtually invariant decaying part
(compare with Figure 2). The observed narrowing simply reflects
the increase of the nonspecific binding strength upon addition
of background (see eq 10).

Note also another difference between both hook curves: for
the system with complex background the respective curve which
was calculated from the nonspiked probes covers virtually the
same Σ range as the hook calculated using the spikes only. For
the system without background the hook of the nonspikes is,
however, considerably narrowed and essentially restricted to the
N range of the hook curve obtained from the spikes. The hook
algorithm calls the probes in the N range as absent. The
respective fraction in the latter system is consequently markedly
larger than in the samples with complex background (98% vs
75%, see Table 1). Hence, the complex background reduces
the percentage of absent probes as expected because a certain
fraction of the nonspiked probes become specifically hybridized
by RNA background fragments (see also the respective schemes
in the Supporting Information). This trend is also reflected by
the larger decay constant of the density distribution which more
than doubles from λ ) 0.07 to λ ) 0.18.

To illustrate the effect on the specific binding strength of
changing nonspecific hybridization, we replot the theoretical
hook curves referring to the two considered systems in Figure
4 (part b) together with the coordinates of selected spikes (see
symbols). The removal of the complex background obviously
shifts the relative position of the probe sets referring to the same
spiked-in concentration away from start point of the hook. This
shift can be partly explained by the reduction of XN which
increases the respective S/N ratio R. The respective shift for
invariant XS and KS was estimated using eq 10) and indicated
by the dotted lines between the two hooks in Figure 4 (part b).
The observed shifts by far exceed the expected shifts for KS )

XS(dilution) )
RAamRNA

1 + amRNA/X∞
S

XS(control) )
XA

S (control)

1 + amRNA/X∞
S

with XA
S (control) ) RA(control)amRNA ≈ const (17)
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const. Hence, this simple graphical analysis clearly indicates
the increase of the specific binding constant in the absence of
the specific background.

In Figure 5 we directly compare the nonspecific and the
specific binding strengths for two spiked-in concentrations (2
and 16 pM) in the absence and presence of the complex RNA
background. This comparison meets the condition for invariant-
expressed probes and thus we have δ log XS ) δ log KS. The
“up-down” effect again becomes obvious by the changes of
XN and KS in opposite directions.

Note that for the preparation without background the values
of the specific binding constants are close to the estimated
surface binding constants (compare the open circles with the
crosses) because the nonspecific binding strength is markedly
smaller than its limiting value X∞

N (compare solid squares with
the horizontal bar). In the preparation with complex background
this relation reverses, i.e., XN is close to X∞

N whereas XS is
distinctly smaller than XA

S . Hence, both situations are close to
the limiting cases of very large and very small nonspecific
hybridization, respectively.

The respective decrease of the specific binding strength gives
rise to the relative correction factor C(#t)/C(#r) ) 10̂(-δ log
KS) ) 3-8 (see eq 7 and Table 1). In other words, bulk
dimerization can cause underestimation of the expression degree
by up to nearly 1 order of magnitude without appropriate
correction.

Golden Spike Experiment. The increase of the amount of
spiked-RNA in the “treatment” sample causes the narrowing
of the corresponding hook curve compared with that of the
“reference” sample (see Figure 6). In this experiment, no
complex background was added explicitly. Instead, the increase
of the concentration of selected transcripts nearly doubles the
amount of spiked-RNA in the treatment sample. Part b of Figure
6 shows “sub-hooks” and probe-density distributions for each
sample which have been separately calculated for the nonspikes
(empty probes) and spiked probes, respectively. The empty
probes accumulate essentially in the N range of the hooks
whereas the spikes preferentially cover the range of larger Σ
values with virtually constant probe density because of the
special experimental design. A considerable amount of the added
spikes consequently hybridizes nonspecifically to the empty
probes.

Note that the reference sample contains, in addition to the
spikes, a certain amount of unlabeled poly-C RNA which was
added to level out the total RNA concentrations in both samples
(see Table 1). Potentially, it constitutes a special reservoir of
nonspecific transcripts, which upon binding “optically” dilutes
the respective intensity contribution owing to the absence of
labels. As a consequence, the Σ(0) coordinate of the reference
sample is expected to shift toward smaller values. This “optical”
effect alone is not related to changes of the binding constants.
On the other hand, the poly-C reservoir possesses relatively
specific binding properties: owing to their homogeneous se-
quences, the respective RNA fragments are poorly approximated
by a unique background contribution to the nonspecific binding
strength of all probes, as assumed by our two-species binding
model. Instead, they will hybridize, if at all, to a small subset
of probes with partly complementary sequences, leaving the
remaining majority of probes unaffected. In this case the poly-C
background remains essentially indiscernible in the reference
sample, having only a small effect on the binding properties,
which are governed by the smaller amount of spikes compared
with the treatment sample. Both effects, the optical dilution of

Figure 4. Latin-square spike-in experiment with (+BG) and without (-BG) background: the hooks are separately calculated from the spikes (14
probe sets at 14 concentrations in triplicate) and nonspikes (12 627 probe sets) (part a). Part b shows selected spikes of common concentration in
the experiments without and with background by symbols of the same type. The respective specific binding strengths (in log scale) are indicated
in the figure. Note that the specific binding strength of the spikes increases upon removing the background from the sample. Iso-XS lines (δ log XS

) const; thin lines, see eq 10) are shown for comparison.

Figure 5. Binding strength of nonspecific (N) and specific (S)
hybridization of the LS experiment with (+BG) and without (-BG)
complex background. The specific data refer to spike-in concentrations
[S] ) 2 and 16 pM. The log-differences (-BG)s (+BG) of the binding
strengths are shown as bars in the right part of the figure. Note that the
N- and S-binding strengths change into opposite directions. The
corrected data are shown by crosses (log XA

S ) and horizontal bars (log
X∞

N).
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the background and the inefficient hybridization of the poly-C
transcripts, predict the smaller Σ(0) coordinate of the reference
and virtually invariant Σ(∞) values. Thus, the positions of the
start and end points of the hook curve do not enable us to
distinguish between these two effects. Optical dilution of the
background, on the other hand, will not affect the position of
the maximum of the hook because it is determined nearly
exclusively by specific binding of labeled transcripts. The shift
of the maximum position of the hook plots between the samples
observed in Figure 6 lets us conclude that poly-C RNA
contributes little to the nonspecific background level. Conse-
quently the increase of the nonspecific background in the
treatment sample is induced predominantly by the additional
spikes.

Figure 7 shows the binding strengths of nonspecific and
specific hybridization in the reference and treatment preparations

and the respective increments. The XS values were calculated
for invariant and differently expressed spikes. The former ones
were divided into four bins of increasing expression (see legend
of Figure 7). The log-increments of XN and of XS for the
invariant-expressed probes clearly show the up-down effect
where the increase of nonspecific hybridization is accompanied
by the common reduction of their specific binding constant
which is virtually independent of the level of specific binding.
For the differently expressed probes the apparent fold change
is smaller than the nominal one because of this effect, i.e., δ
log XS(fc) ) δ log KS + log(fc) with fc ) [S](#t)/[S](#r). For
example, for the 2-fold increased spikes one gets δ log XS(fc)2)
) 0.2 ( 0.1 instead of the nominal value log(2) ) 0.3. The
difference between both values is roughly given by the decrease
of the binding constant obtained from the invariant expressed
probes, δ log KS =-0.07. Note also that the level of nonspecific
background due to the spikes is far from saturation (compare
blue squares with the horizontal bars in Figure 7).

RNA/DNA Spike Experiment. The last experiment consid-
ered in this paper uses a treatment vs control design where both
preparations contain a complex background. Altogether nine
spikes are added into the treatment samples in concentrations
not specified in the original publication.19 The experiment has
been performed in two versions using either cRNA (R) or cDNA
(D) as targets for the DNA probes. The comparison of the hook
plots reveals essentially three differences between the R and D
hybridizations (see Figure 8, compare part a with part b): first,
the hooks of the R hybridizations are shifted toward larger Σ
values, indicating a generally larger intensity level for the R
hybridization; second, the decay constant of the probe-density
distribution is larger for the D samples, indicating a more
advantageous S/N ratio; and third, the hooks of the #t and #r
samples are shifted relative to each other in the R experiments
but not in the D experiments, which seems to be a puzzling
difference between both systems.

Figure 9 summarizes the binding strengths of all four
preparations (part a) and the respective increments in the
treatment vs reference comparisons separately for each chemical
entity (R and D); and in the R vs D comparisons separately for
the reference and treatment preparations (#r and #t; part b). The

Figure 6. Large-scale spike-in experiment (golden spike): The hooks refer to the reference and treatment conditions. In the treatment sample the
amount of added spike-RNA is nearly duplicated. The hooks are calculated for all probe sets (14 020, part a) and separately for spiked (3839) and
empty probe sets (part b). The treatment of the samples with additional RNA narrows the hooks. The respective density distributions of the empty
and spiked probes indicate that the empty probes preferentially accumulate in the left horizontal part of the hook assigned to absent probes (part
c). Contrarily, the spikes preferentially cover the region of the hook to the right from the breakpoint which is assigned to the present probes.

Figure 7. Binding strength of nonspecific (N) and specific (S)
hybridization of the reference and treatment samples of the GS
experiment. The specific data refer to four collections of invariant
expressed control probes of increasing S/N ratio (log R(#r) ) 0.5 (
0.1; 1.0 ( 0.1; 1.5 ( 0.1; 2.0 ( 0.1) and to two collections of
differentially expressed spikes (fold changes: 2× and 4×). The
increments of the binding strengths between the treatments and reference
samples are shown as bars in the right part of the figure. Note that the
N- and S-binding (of invariant expressed probes) strengths change in
opposite directions. The corrected data are shown by crosses (specific
binding strength) and horizontal bars (nonspecific binding strength).
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N-binding strength of the background was estimated from the
width of the respective hook curves. The S-binding strength
was separately determined for five groups of invariant-expressed
probe sets collected from the nonspikes to cover the range from
small to high expression values; and the spikes collected into
the group of differentially expressed probes.

As in the previous examples, the addition of targets (spikes)
increases the N-binding strength of the background and de-
creases the S-binding strength of the invariant-expressed control
probes. For D targets this trend virtually disappears. Hence, the
up-down effect is clearly manifested in the R experiments but
hardly detectable for D as already suggested by the comparison
of the respective hook curves. The actual nonspecific binding
strengths of the latter systems are close to their estimated
limiting values, X∞

N (compare horizontal bars and squares in the
part a of Figure 9). This implies that the given D samples are
relatively insensitive to variations of the nonspecific binding
strength.

Note that the spikes are virtually absent in the #r samples
because their specific binding strength is markedly smaller

than the respective XN values. The binding strengths of the
few spikes adopt extraordinary large values of XS > 3: in the
#t samples these transcripts are obviously added in very large
amounts. Typical values of the binding strengths rarely
exceed unity. The impact of substituting RNA by DNA
targets will be discussed below.

4. Discussion

The Up-Down Effect. We studied the effect of changing
nonspecific background hybridization on the specific signal.
Microarray data taken from different benchmark experiments
were analyzed using a simple theoretical approach which
expresses the effective reaction constants of specific and
nonspecific hybridization as functions of the equilibrium
constants of relevant molecular processes such as the folding
of target (specific and nonspecific) and probes and dimer-
izations between probe and targets at the chip surface and
between the targets in bulk solution (see eq 1). Part a of
Figure 10 shows the expected dependencies of the specific
and nonspecific binding strengths upon increasing background

Figure 8. RNA/DNA spike-in experiment: the hooks refer to the hybridization before and after adding the spikes for RNA (part a) and DNA (part
b) hybridizations. The mean decay of the density distributions of the reference samples is indicated by the dotted lines (λ is the decay constant).

Figure 9. Binding strengths of the background (XN) and of invariant-expressed control and of differentially expressed spiked probe sets (XS) before
(reference) and after (treatment) adding the spikes in RNA and DNA hybridizations (part a). Part b shows the respective differences of the binding
strengths treatment minus reference for RNA and DNA hybridizations and RNA minus DNA for the reference and treatment, respectively. The
spikes (differentially expressed) are mean values over all 9 spikes and the five groups of invariant-expressed data are averages over 18 invariant-
expressed probe sets each. These groups were chosen from different intervals of XS to provide representative values ranging from small to large
expression values.
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level for invariant expressed probes ([S] ) const; eq 3).
Accordingly, theory predicts opposite signs for the changes
of XS and XN. The respective functions are characterized by
the limiting “start” value of XS at vanishing background
hybridization, XA

S (the specific surface binding strength) and
the asymptotic value of XN at infinite background concentra-
tion, X∞

N. The latter value also defines the abscissa value
referring to 50% of the asymptotic value.

For further discussion we introduce the reduced binding
strengths

which rescale the coordinate axes according to

and use the log-log representation (see part b of Figure 10).
In eq 18 we have used the approximation X∞

N ≈ X∞
S introduced

in the discussion following eq 5. The respective log-increments
for invariant-expressed probes, e.g., between treatment and
reference conditions, δ log � ≡ log �(#t) - log �(#r), then
simply become (see part c of Figure 10)

Samples prepared using identical hybridization protocols,
target chemistry, and chip types meet the condition of invariant
chemical interactions (δ log KP-h ) δ log Kh-N ) δ log Kh-fold

) 0). For the invariant-expressed probes one gets in this case
(with δ log[S] ) 0; see eqs 2 and 3)

i.e., the increments of the reduced binding strengths directly
provide the increments of the respective binding constants and
strengths.

The relation between the absolute values of the changes of
the specific and nonspecific binding strength varies with
increasing nonspecific background level as follows (see parts b
and c of Figure 10):

(i) at small background levels, �A , 1, large changes of the
nonspecific background induce relatively small changes of the
specific binding constant, i.e., |δ log �N| > |δ log �S|;

(ii) the intermediate range is characterized by comparable
magnitudes of both processes, |δ log �N| ≈ |δ log �S|; and

(iii) upon saturating background level one expects a relative
large effect of �S but only small changes of the background,
i.e., |δ log �N| < |δ log �S|.

In all the four benchmark experiments studied, we have
confirmed that the up-down effect agrees with theory. Two of
them, the dilution and the Golden spike data, correspond to
situation (i) whereas the Latin-square and the RNA/DNA spiked
data refer to situations (ii) and (iii), respectively. The hook plots
enable the simple and straightforward identification of the
respective increments of the binding strength by visual inspec-
tion and subsequent detailed analysis. These values then provide
estimates of the specific surface binding strength, XA

S , and of
the limiting nonspecific binding strength, X∞

N (see horizontal bars
and crosses in Figures 3, 5, 7, and 9 and also Table 1).

The magnitude of the latter values was log X∞
N ) -2.8 to

-2.4 for the experiments that use a complex background of
“biological” origin extracted from cell lines. It increases by
roughly 1 order of magnitude for the Golden spike experiment
to log X∞

N ) -1.6 for unknown reasons. Note, however, that
the background level in this experiment is measured by cross
hybridization of a relatively large but nevertheless limited
number of more than 3000 spikes of predefined and relatively
high concentrations to the empty probes. The marked increase

Figure 10. Specific and nonspecific binding strength as a function of the nonspecific background given in units of the surface binding strength of
nonspecific hybridization (part a). The curves are calculated using eq 3. Part b shows the same curves in reduced coordinates (see eqs 18 and 19).
The arrows illustrate the log-increments of the binding strengths between treatment (#t) and reference (#r) conditions upon increasing nonspecific
hybridization. Note the opposite signs of the changes of the specific and nonspecific values. This up-down effect is illustrated in part c which
shows the slope of curves shown in part b (eq 20). The three ranges (i)-(iii) are explained in the text.

�N ≡ XN

X∞
N

, �S ≡ XS

XA
S

, and �A ≡
XA

N

X∞
N
)

XA
N

X∞
S

(18)

�S ) 1
1 + �A

and �N )
�A

1 + �A
(19)

δ log �S ) -�Nδlog �A and δ log �N ) �Sδ log �A (20)

δ log �S ≈ δ log KS ) δ log XS,
δ log �N ≈ δ log XN, and δ log �A ≈ δ log XA

N (21)
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of X∞
N possibly reflects the smaller propensity of theses transcripts

for bulk dimerization in this experiment (see eq 3). This
difference shows that the limiting value X∞

N in general depends
on the composition and heterogeneity of the RNA cocktail used
for hybridization.

Vice versa, X∞
N scales the up-down effect: Rearrangement

of eq 6 and setting XN ) XN(#r) in eq 21 gives

which explicitly links the increments of the specific and
nonspecific binding strengths.

Proper Scaling of Expression Measures. Microarray experi-
ments endeavor to estimate selected transcript abundances from
the complete set of intensity responses of the probes across the
microarray surface. There are a multitude of different so-called
preprocessing methods which aim at correcting raw probe
intensities for systematic biases due to parasitic effects such as
nonspecific hybridization, sequence-specific binding affinities,
and/or saturation (see, e.g., refs 4, 20, and 21-24, and ref 3 for
a minireview). These methods transform the probe intensity into
an “expression degree” (or “expression index”) by inverting the
selected intensity function. The obtained measure is at best (e.g.,
if properly corrected for parasitic effects such as nonspecific
background and/or saturation) directly related to the specific
transcript concentration (and specific binding strength) as
follows

where F is a proportionality constant owing to “technical”
factors depending, for example, on the scanner settings, array
design and the protocol for RNA extraction, preparation,
hybridization, and labeling. The differential “expression” is
given as the increment of the expression degree (in logarithmic
scale) between two conditions which thus additively depends
on all considered factors, e.g., δ log E ≡ log E(#t) - log E(#r)
) δ log(FKS) + δ log[S].

Note that the biologically relevant “expression change” is the
increment of specific transcript concentration, δ log[S]. Hence,
differential expression, δ log E, is potentially biased by δ
log(FKS) and therefore error prone.

Any transformation of the expression values which aims at
ensuring δ log(FKS) ) 0 is called normalization. This way
normalization makes the expression values of different chip
experiments “comparable” in the common scale of transcript
abundance. Proper normalization thus removes potential biases
due to changes of the scaling of the transcript concentration
between the experiments.

It should be mentioned at this point that our hook method
estimates the technical factor F, which is simply given by the
maximum intensity upon saturation of the probes, i.e., log F )
log Imax ) Σ(∞) (see the hook equation in the Supporting
Information and the linear part of eq 15, i.e., the Xp , 1 regime
relevant to most intensity measurements within a given experi-
ment). As a consequence, the hook-expression values are scaled
in natural units of the specific binding strength, δ log XS )
δ log KS + δ log[S], which corresponds to δ log F ) 0.

Our analysis clearly shows that nonspecific hybridization
affects the specific binding constant and in this way scales the

expression degree even at virtually invariant technical conditions
(i.e., δ log KS * 0). The level of nonspecific hybridization
depends on the overall expression level of the studied cells and
on the RNA yield of extraction and subsequent amplification.
Both factors can systematically vary from experiment to
experiment. The up-down down effect therefore should be seen
as an inherent property of the microarray techniques. It implies
the following algorithmic framework and basic rules for its
proper correction:

(a) The expression degree (eq 23), i.e., quantities designed
to scale linearly with the specific target concentration) and not
raw intensities should be used in adequate correction/normaliza-
tion transformations (see also next section).

(b) Selected probes with special properties such as invariant-
expressed probes (and not all probes of the chip or absent
probes) provide the value(s) of the expression degree or specific
binding strength for proper correction.

(c) Correction applies to the expression degree (and not to
the intensity) of all remaining probes. Absent probes with tiny
expression values consequently remain virtually uncorrected.

On the basis of (a)-(c) we propose a simple multiplicative
correction in a treatment vs reference experimental design. The
correction factor rescales the apparent expression degrees into
their limiting value referring to the absence of nonspecific
background (eq 7). The extension for more than two conditions
can be simply realized, e.g., by decomposing the conditions into
multiple treatment vs reference pairings. Below we modify our
approach using M vs A plots to compare and correct the
expression data of paired conditions.

Note that most popular normalization algorithms violate rules
(a)-(c). In the next sections we illustrate and discuss the
consequences for the obtained expression estimates and sub-
stantiate the proposed rules.

Normalization of Microarray Data. In addition to back-
ground correction and summarization, normalization is one of
the three basic steps of microarray preprocessing which
transforms raw intensity data into expression measures. There
exist a multitude of normalization methods which, with respect
to the processed ensemble of probe data, can be roughly
classified into complete-set and subset normalizations. The
former ones use the whole intensity information of all probes
of the chip whereas the latter ones select a subset of probes
suited for normalization. The probe signals of the respective
sets are then summarized e.g. by log-averaging in the simplest
case, and then leveled between the arrays of the considered
series, e.g., by proportional scaling.

Complete-set normalization methods such as Global (based
on a trimmed mean summarization25,20), LOESS (leveling the
local mean26,27), Quantile,28,29 and Zipfs law30 (both leveling the
signal-frequency distributions) normalizations assume that the
expression changes are “balanced”, i.e., up- and down regula-
tions are virtually equal in magnitude. Violation of this
assumption gives rise to biased expression estimates: for
example, an unbalanced up regulation becomes counterbalanced
by the apparent down regulation of in reality invariant genes.
Complete set normalizations validly apply to situations where
only a small fraction of genes is differently expressed between
the compared arrays.

Subset normalizations aim at avoiding this “center of gravity”
bias of the complete-set methods by using either external
controls which are spiked onto the arrays with known
concentrations31,32 or by selecting probes of invariant expression
as reference for leveling the signals of all probes.33,23,5 Typically,
normalizations using external controls are not very precise

δ log XS ) log(X∞
N - XN(#t)

X∞
N - XN(#r)) ) log(1 - �N ·10δ log XN

1 - �N )
(22)

E ) FKS[S] (23)
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because of the relatively small number of spikes. Invariant set
methods pose not only the problem how to identify invariant
genes from the probe signals but they are conceptually incorrect:
Apparently invariant-expressed probes are in fact differently
expressed probes where the change of the true expression is
compensated by the change of the specific binding constant due
to the up-down effect (see eq 23 with E ) const and δ log(FKS)
) - δ log[S] * 0; see also next section).

Most of the normalization algorithms can be applied in a
standalone fashion independently of the other preprocessing
steps, for example, either before or after background correction.
In most applications, normalization directly applies to intensity
data to adjust them for subsequent downstream analyses. The
rationale behind this approach is the assumption that intensity
contributions due to specific and nonspecific hybridization scale
in a similar fashion and, consequently, they can be corrected in
parallel.

Reference Probe SelectionsPitfalls of Complete and
Subset Normalizations. Normalization techniques employed
by existing expression indices are heuristic approaches which
fail to account explicitly for the underlying hybridization
chemistry, and, in particular, for the up-down effect. The

resulting consequences are illustrated here using as an example
signal distributions of the Golden spike data (Figure 11). In
addition to the total distribution of all probes, we also depict
the distributions of selected subsets of probes, namely that of
the empty (i.e., invariant-absent), invariant-expressed and dif-
ferentially expressed spiked (referring to a 3.5-4 fold increase
upon treatment) probes, together with the center of gravity of
the subset-distributions (see the vertical bars).

The distributions of the raw intensities (log IPM) are relatively
broad and largely overlap (see part a of Figure 11). To filter
out subtle differences, we substitute the probe-level data by the
set-averaged Σ-coordinate used also for the hook plots (see eq
8). This transformation significantly narrows the distributions
because it partly corrects the data for sequence-specific varia-
tions of the probe intensities. Part b of Figure 11 shows that all
distributions of the treatment are shifted to the right compared
with the reference owing to the stronger nonspecific background
(compare also with Figure 6).

Part c (total adjust) mimics complete set normalization
methods by shifting and scaling the total distribution of the
treatment in horizontal direction until it aligns roughly with that
of the reference sample, and then transforming the subset

Figure 11. Density distributions of the reference (black lines) and treatment (red lines) probes of the Golden spike experiment. The distributions
are calculated for all probes (total) and for subsets of the empty, invariant and differentially expressed probes (see part a for assignments). Part a
shows the intensity distributions and part b the distributions along the set-averaged Σ-coordinate. Note that set-averaging considerably narrows the
widths of the distributions. The vertical bars indicate the center of gravity of the subdistributions. Three different normalizations are shown in parts
c-e: The distributions of the total (part c), the empty (d), or invariant (e) probes of the treatment sample are shifted and scaled in such a way that
they align with the respective distribution of the reference sample. Note that none of these transformations aligns all subdistributions. Shifts of the
centers of gravity between the samples are indicated by the arrows.
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distributions in the same way. This total-adjust method does
not successfully align the subdistributions with each other. In
particular, the right flank and the mean of the distribution of
invariant expressed genes of the treatment become “overcom-
pensated”; i.e., they are shifted to the left with respect to the
respective reference distribution. This difference simply reflects
the decrease of the specific binding constant in the treatment
sample. As a consequence, invariant-expressed probes appear
to be down regulated and the apparent fold change of the spikes
underestimates the true value as indicated by the arrow (see
also below). Contrarily, the empty (i.e., invariant absent) probes
are apparently up-regulated. Hence, both kinds of invariant
probes register as being differentially expressed, though in
opposite directions.

The panels d (empty adjust) and e (invariant adjust) of Figure
11 mimic subset algorithms which use either the empty
(invariant absent) or invariant-expressed probes for normaliza-
tion. Again we shift and scale the respective subset distribution
of the treatment sample along the Σ-axis to match that of the
reference and then transform the remaining distributions of the
treatment sample in the same way. The results show that the
empty adjust transformation also overcompensates, in fact even
more than the total-adjust alignment: the mean position of the
invariant-expressed probes is clearly down regulated because
the up-down effect shifts the distributions of empty and
expressed probes in opposite directions. Contrarily, the align-
ment of the invariant distributions upon empty-adjust transfor-
mation undercompensates the signals of the empty probes, the
expression of which appears to be up-regulated after treatment.

While the finding that neither complete-set nor subset
normalization can accurately adjust all probe intensities may
seem disappointing, it is not surprising given the underlying
up-down effect which drives specific and nonspecific hybrid-
ization in opposite directions. Consequently, any parallel scaling
of absent and present probes must fail. Instead, both kinds of
probes must be processed differently, as proposed in the previous
section by rules (b) and (c). Accordingly, invariant expressed
probes are used for estimating a correction factor which is then
applied to all present probes. Absent probes are simply filtered
out from further analysis.

Note that the apparent expression of both empty (i.e.,
invariant absent) and invariant (“truly”) expressed probes
does not change between the preparations. Available invariant
subset-normalization methods5,23,33 do not in general remove
absent probes from the controls, and the consequent mixing
of absent and present invariant probes renders these methods
prone to errors.

Normalization of Intensity or Expression Data? Probe
intensities are superpositions of contributions due to specific
and nonspecific hybridization, each of which are differently
affected by the up-down effect. Differentiation of eq 15
provides the respective intensity increment

where xS ) XS/X denotes the fraction of specific hybridization
and X ) (XS + XN) is the total binding strength. Equation 24
shows that each intensity change between preparations represents
a weighted superposition of the opposite up and the down shifts.
The intensity change of weakly expressed low-intensity probes
with xS , 1 is consequently dominated by the shift of the
nonspecific binding strength δ log XN, whereas strongly

expressed probes with xS =1 are mainly affected by the opposite
sign shift of δ log XS.

This effect becomes evident in Figure 11 (see, e.g., part c,
total adjust) if one compares the widths of the distributions of
the invariant expressed probes between the #t and #r samples:
The relative narrowing of the #t distribution reflects the
progressive compensation of δ log XN > 0 by δ log XS < 0 with
increasing abscissa value. As a consequence, the right high-
intensity flank of the distribution shifts to a less degree than
the left, low-intensity flank.

Intensity-based normalizations therefore tend to underestimate
the extent of correction because the up and the down contribu-
tions partly compensate each other. Proper normalization
consequently requires foregoing correction of the intensity for
the nonspecific background and direct scaling of the expression
measures as suggested by rule (a) (see above). In the next
paragraph, we illustrate the importance of this rule together with
a simple correction approach based on the M vs A plot of the
data.

M vs A Correction. M vs A plots accent specific differences
in treatment vs reference comparisons in a signal-dependent
fashion. Panel a of Figure 12 shows the probe-set-averaged raw
intensity data of the Golden spike experiment in M vs A
coordinates (see eq 11). The invariant-expressed and empty
probes form highly nonlinear data clouds which reveal the so-
called “banana effect” which is known especially from M vs A
plots of two-color microarray platforms. It results from differ-
ences of the sensitivity and the offset between the two
dye-channels.34,35 The up-down effect can be interpreted in
analogy if one considers the increment of the nonspecific binding
strength between the samples as offset-bias and the increment
of the specific binding constant as sensitivity-bias. Accordingly,
the empty probes are offset in up-direction at small A values
(δ log XN > 0). The points referring to the invariant expressed
probes shift downward with increasing abscissa values owing
to the progressively increasing contribution of specific hybrid-
ization (with δ log XS < 0) to the respective probe-intensities
(see eq 24).

A second analogy links the M vs A plot with the hook plot,
which is essentially a smoothed M vs A plot of the affinity-
corrected PM and MM intensities (see eqs 8 and 11). Applying
eq 13, one can model the treatment vs reference intensity data
shown in Figure 12 to obtain the curves in part a. The vertical
position of the starting point of the theoretical curves is given
by the log-increment of the nonspecific binding strength,
whereas their “height” in the intermediate range is related to
the log-increment of the specific binding strength (see eq 14).
The obtained curves render both the behavior of the invariant
expressed probes and the differentially expressed probes ac-
curately. The curves for the latter probes are calculated with
δ log[S] > 0 according to selected fold changes. Note that all
curves converge at the start and end points owing to the common
nonspecific binding and saturation properties, respectively. In
the intermediate range, they diverge along nonparallel trajec-
tories, thus complicating any direct interpretation of the intensity
M vs A plot. Note that the affine transformation used for
normalizing two-color microarray intensity data implicitly
accounts for diverging M vs A curves, assuming the superposi-
tion of two additive components (due to the offset and the
sensitivity).35 This method, however, neglects saturation and is
therefore unable to reproduce the convergence of the curves to
a common right-hand end point.

We use an alternative approach and first calculate the
expression degree of the probe sets in units of the S/N ratio R

δ log I ≡ log I(#t) - log I(#r) )
xSδ log XS + (1 - xS)δ log XN

1 + X
(24)
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obtained from the hook analysis (eq 4). This quantity is then
plotted in M vs A coordinates, as shown in part b of Figure 12.
This transformation essentially straightens the curved banana-
like shape of the intensity data to virtually horizontal data clouds
of the expression degree. Their M-coordinate simply provides
the log-increment of the S/N ratio, M ) δ log R ) (δ log KS +
δ log[S] - δ log XN). The difference between differentially (|δ
log[S]| > 0) and invariant-expressed (δ log[S] ) 0) data then
provides the increment of the transcript concentration between
the #t and #r samples, δM ≡ Mdiffexpr - Minvexpr ) δ log[S]. In
other words, the M coordinates of the invariant expressed probes
constitute the reference level for estimating differential expres-
sion as indicated by the horizontal lines in part b of Figure 12.
The particular δM levels systematically underestimate the larger
nominal fold changes FC > 3 for reasons which are unclear.
Similar discrepancies have been reported in previous analyses
of the Golden spike data.18,36

We emphasize again that this simple relation does not hold
for intensity data. Local baseline-correction methods like LOESS
are inadequate to correct intensity based M vs A data for the
up-down effect, because the nonlinear differences between
differentially expressed and invariant probes remain uncorrected.
LOESS normalization becomes, however, an appropriate cor-
rection method for (small) baseline biases after transforming
intensity into of the expression values.

This result gives reasons for our normalization rule (a) (see
above). Most popular preprocessing methods such as dChip,23

RMA,4 gcRMA,37 vsn,5 and PLIER24 are multichip algorithms
using the intensity information from whole chip series to extract
expression values. For these methods rule (a) raises inherent
problems because they require intensity normalization prior to
the estimation of the expression values in the summarization
step. On the other hand, the single-chip methods MAS525 and
hook12 provide expression values without the necessity of
normalizing intensity data from different chips. These methods
are therefore preferential candidates for the adequate correction
of the up-down effect. However, in MAS5, in order to make
microarrays comparable, the trimmed average of all signals on
a microarray is set to some predefined value which intrinsically
overrules our normalization rule (a).

Rule (c) requires the removal of not-expressed probes from
normalization. The hook algorithm calculates expression values
for all probe sets independent of their present call. The
expression values of absent probes shown in Figure 12 (part b)
reveal that these data are indeed ineligible for proper correction
of the up down effect because they systematically deviate from
the M level given by the invariant expressed probes. Absent
flagged probe sets are per definition beyond the resolution limit
of the method and their quantitative analysis in terms of
expression values consequently must fail.

For estimating the reference M level one has therefore to
identify invariant expressed (and not invariant absent) probes
among the microarray data. This task is beyond the topic of
this article. Note that rule (b) applies to “truly” invariant-
expressed probes. Their “apparent” expression value prior to
normalization changes, however, due to up-down effect
whereas differently expressed probes of a fold change that
compensates the increment of the specific binding constant
become apparently invariant. For example, part b of Figure 12
indicates that invariant-expressed probes are apparently down
regulated (M < 0) whereas the spikes with a 2-fold change are
apparently invariant (M ) 0). Consequently, algorithms which
select probe sets of small variance of their expression values in

a chip series as invariant sets for subsequent normalization
purposes33,38 are not suited for proper correction of the up-down
effect.

Impact of Substituting RNA by DNA Targets. Figure 13
compares the intensity- and expression-based M vs A plots of
the DNA/RNA-spiked experiments which use either RNA or
DNA targets for hybridization of the DNA probes. The RNA
sample clearly shows the stronger curved “banana” of the raw
data, revealing the larger up-down effect in agreement with
the results obtained above (see Figures 8 and 9). After hook
analysis, the data clouds of the expression values (S/N ratio R)
run virtually parallel with the abscissa. As argued in the previous
section, the vertical distance between the data levels given by
the invariant and by the differentially expressed probes provides
increment of the expression value. With δ log[S] = 4.1, it is in
the same order of magnitude as the measuring range of the
method. Note the different average M levels of the invariant-
expressed probes of both preparations, again indicating the
different effect of the same amount of spikes on the up-down
effect.

Direct comparison of the binding strengths of both chemical
entities shows characteristic differences (see part b of Figure
9): RNA targets give rise to a larger nonspecific background
level accompanied by smaller specific binding constants com-
pared with DNA targets. Hence, the substitution of DNA (D)
by RNA (R) resembles the up-down effect for changing the
concentration of nonspecific transcripts discussed above. In
contrast to this situation, the condition of invariant chemical
interactions (eq 21) does not hold for D-by-R substitution.
Differentiation of eq 3 provides after some algebra with X∞

N )
X∞

S (see discussion following eq 5) the increment of the binding
strengths,

where �N is defined in eq 18. Decoding the effective binding
strengths in terms of the reaction constants (eq 2), one gets for
the increment of the binding strength owing to the D-by-R
substitution at invariant specific and nonspecific transcript
concentrations, [S] ) const and [N] ) const, respectively,

According to eq 26, the increment of the binding strengths
changes linearly with the nonspecific background level, �N. For
the limiting cases of vanishing (�N ) 0) and saturated (�N ) 1)
background and assuming invariant folding propensities of the
DNA probes (δ log (1 + KP-fold) ) 0), eq 26 provides

Hence, the value of the bimolecular association constant of
probe/target duplex formation, KP-h, becomes effectively modi-
fied due to the folding and/or bulk dimerization of the respective

δ log Xh ) δlog KA
h + δ log[h] - �N(δ log KB

N +
δ log[N]) (25)

δ log Xh|[h])const ) δ log Kh ≡ log Kh(R) - log Kh(D) )

δ log KP-h - (�Nδ log KN-N + (1 - �N)δ log(1 +
KN-fold) + δ log(1 + KP-fold)) (26)

δ log Kh ) δ log KP-h - { fN-foldδ log KN-fold for �N ) 0

δ log KN-N for �N ) 1

with fN-fold ≡ KN-fold

(1 + KN-fold)
(27)
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transcripts in solution. The effect of folding is maximal at
vanishing nonspecific background whereas bulk dimers affect
target binding mostly at saturated background level. Note that
the folding effect can be neglected for KN-fold , 1.

Equations 26 and 27 show that the changes of the effective
bindings constants depend on the increments of the different
reaction rates caused by the substitution of the target. Recall
that the R and D targets give rise to different interactions on
the chip surface and in the bulk solution, namely D/R vs D/D
base pairings in the probe/target duplexes and R/R vs D/D
interactions for bulk dimerization and folding of the targets,
respectively.

A previous study shows that the thermodynamic stability of
specific 27-meric duplexes increases with D/D < D/R < R/R
where the mixed case D/R is closer to D/D than to R/R.44 For
an alternative evaluation we calculated mean Watson-Crick
dimerization free energies over all probes of a GeneChip using
the nearest-neighbor model (Table 2). The resulting general
pattern of interaction strength is D/D = D/R < R/R, i.e., D/D
and D/R interactions are of similar magnitude whereas R/R
interactions are significantly stronger. The binding free energies
are strongly correlated between the different chemical entities
with correlation coefficients F > 0.85, indicating similar
sequence-specific sensitivities of the probes in all cases (see
footnote in Table 2).

The negative logarithm of the equilibrium constants is directly
related to the respective free energy, i.e., δ∆G ≡ ∆G(R) -
∆G(D) ∝ -δ log K. The obtained ∆G values therefore suggest

These relations predict in combination with eqs 26 and 27
the parallel decrease of the specific and nonspecific binding
constants, i.e., δ log Kh < 0. After substitution of the D by R
targets, one does indeed observe a decrease of the specific

binding strength of the invariant-expressed probes (see part b
of Figure 9). Hence, the stronger R/R interactions obviously
amplify bulk dimerization and target folding, which effectively
weakens hybridization of the probes with specific targets.

This argument also applies to nonspecific target binding which
is apparently in contradiction with the observed slight increase
of the background level, i.e., δ log KN > 0 (see Figure 9, part
b). Note, however, three arguments which might explain this
effect as follows.

First, our estimation of the binding strengths summarized in
Table 2 is based on perfect-matched 25-meric dimers. This
situation does not apply to nonspecific duplexes with mis-
matched pairings which potentially contribute to duplex stability
in a different fashion. For example, G/U mismatches form
relatively stable wobble base pairings in DNA/RNA hybrid
duplexes (and RNA secondary structures as well) which are
expected to enhance the mean binding constant of mismatched
nonspecific R/D duplexes compared with D/D complexes.

Second, the two-species binding model approximates non-
specific binding of a large variety of fragments by one effective
N species which represents an affinity-weighted mean value
averaged over all nonspecific fragments.45 Possibly, the wider
distribution of R/D interactions (compared with D/D) and the
larger weighting of stronger interactions are expected to enhance
the mean binding constant of the nonspecific R fragments.

Third, the ∆G estimates of duplex stability in Table 2 are
calculated using bulk solution parameters which are not neces-
sarily appropriate for surface binding, for example, because of
position-dependent effects. The so-called specific PM/MM gain
estimated from the height of the hook curve represents a relative
measure of specific probe/target stability which compares the
central Watson-Crick pairing in the PM probes with the self-
complementary mismatches formed in the specific duplexes of
the MM probes. This PM/MM gain is significantly larger in
the presence of RNA targets (1.05-1.12 vs 0.93-0.95, see
Table 1) which implies the slightly stronger surface binding.

Taking together relatively stable mismatches, the stronger
interactions in the wider tail of the density distribution and/or
surface effects suggest δ log KP-N > 0 which compensates or

Figure 12. Treatment vs reference comparisons of the Golden spike experiment: M vs A plots of probe set-averaged log-intensity values of the PM
probes (part a) and of the S/N ratio (log R, part b). Empty, invariant expressed and spiked (differentially expressed) probes are color coded (see
figure). The curves in the first plot are calculated using the eq 13 with the parameters (eq 14); see text). The curves refer to the invariant expressed
probes with δ log[S] ) 0 and to the spikes with different fold changes. The data cloud formed by the former probes resembles a banana-like shape
which is caused by the up-down changes of XN and XS (see arrows) after treatment. The S/N ratio of the probe sets were obtained by the fit of the
hook equation to the ∆ vs Σ plots shown in Figure 6. The hook analysis bends the curved bananas of the expressed probes into virtually horizontal
data clouds (see part b).

δ log KP-h ≡ log KP-h(R/D) - log KP-h(D/D) ≈ 0
δ log KN-N ≡ log KN-N(R/R) - log KN-N(D/D) > 0
δ log(1 + KN-fold) ≡ log(1 + KN-fold(R)) -

log(1 + KN-fold(D)) g 0 (28)
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even overcompensates the effect bulk hybridization and ef-
fectively increases KN. Note also the corresponding slight
difference of the limiting values X∞

N(R) g X∞
N(D) (see Table 1)

which might be explained in an analogous fashion by the larger
surface effect (see eq 3).

In summary, the effect of substituting RNA by DNA targets
is essentially 2-fold. First, it slightly decreases the nonspecific
background level owing to weaker binding of the nonspecific
D fragments to the D probes. Second, it effectively boosts
specific binding because free accessible D fragments deplete
to a smaller degree than R fragments because of their weaker
folding and bulk dimerization. Both effects are expected to
improve the performance of the microarrays in terms of
sensitivity and specificity. Note that the sensitivity of the method
is directly related to KS and its specificity to KS/XN.6,7 Note also
that the S/N ratio of the D hybridization spans a larger measuring
range as reflected by the larger decay constant λ of the density
distribution (see above). This characteristic parameter aggregates
both KS and XN into one characteristic signal-to-noise ratio.

Adequacy of Benchmark Experiments. In this study we
reanalyzed the raw-data of five benchmark experiments which,
in general, aim at generating and verifying theoretical aspects
of microarray hybridization and/or at judging the performance
of microarray analysis methods. Different test scenarios can be
used to model either a particular experimental application (e.g.,
a treatment vs control comparison) or the calibration function

Figure 13. Treatment vs reference comparisons of the RNA/DNA spike experiment: M-A plots of probe-set-averaged log-intensity values of the
PM probes (panels a and b) and of the S/N ratio log R (panels c and d). The theoretical curves in parts a and b refer to the invariant and differentially
expressed probes (i.e., spikes). The spikes are enriched by about 4 orders of magnitude after treatment. The banana-like shape of the DNA hybridization
is much less pronounced than that of the RNA hybridization owing to the weaker up-down effect (see also Figure 9). After hook analysis the
curves straighten into the horizontal lines as shown in parts c and d.

TABLE 2: Mean Free Binding Energies and Sdandard
Deviation (SD) of Watson-Crick Paired DNA/DNA, DNA/
RNA, and RNA/RNA 25-meric Duplexes in Bulk Solutiona

interaction
mean ∆G/
kcal/mol

SD(∆G)/
kcal/mol

NN parameters
taken from ref

RNA/RNA -64.7 7.9 39
DNA/RNA -42.5 7.0 40
DNA/DNA(1) -42.6 4.4 41
DNA/DNA(2) -47.6 4.5 42

a The duplex free binding energies in 1 M NaCl bulk solution at
45 °C were calculated for each of the 403 614 25-mer probe
sequences on an Affymetrix HGU95a GeneChip using nearest
neighbor stacking models43 and averaged. SD denotes the respective
standard deviation. In these models, the total free energy at
temperature T is given by ∆G ) ∆H - T∆S, where ∆H and ∆S are
each calculated as a sum of an initiation term plus experimentally
determined stacking parameters corresponding to neighbor pairs of
nucleotides taken from the references listed in the last column of
the table. Binding energies are highly correlated across different
probe sequences, with correlation coefficients F(∆G R/R,∆G D/R) )
0.92, F(∆G R/R,∆G D/D) ) 0.95, and F(∆G D/R,∆G D/D) ) 0.89.
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linking the input with the output quantities of the measurement,
transcript concentration and intensity, respectively.

Spike-in experiments of the Latin-square-type were success-
fully used in many methodical studies comparing preprocessing
methods (see, e.g., refs 4 and 46 and references cited therein)
and developing hybridization models (see, e.g., refs 8- 10, 14,
45, and 47). The small number and amount of variable
transcripts affecting less than 1% of the available probe sets
and the cyclic permutations of the spikes among the chips ensure
a constant total RNA concentration in all preparations which
results in a rather small interchip variability of the nonspecific
background level. More importantly, these chip data virtually
lack systematic shifts of the mean background hybridization.
As a result the concentration dependence of the spikes is not
perturbed by the up-down effect. On the other hand, this type
of experiment is not optimally designed for judging normaliza-
tion algorithms owing to the virtual invariance of chip effects.

Contrarily, a relatively high number of transcripts referring
to ∼25% of all probe sets are hybridized in benchmark
experiments of the Golden spike type where the concentration
of about one-half of these spikes is varied in a treatment vs
control design.18 The parallel change of the total RNA concen-
tration of the spikes gives rise to a significant up-down effect
which complicates “naive” analyses to reproduce the nominal
fold changes. For example, in their original report Choe et al.
suggest multiple normalization steps on raw intensities and
expression values before and after summarization, respectively,
combined with signal-dependent filtering of the data.18 This
heuristic approach partly accounts for our normalization rules
(a)-(c). The presented M vs A plots (see, e.g., Figures 4 and 6
in ref 18) clearly indicate that this correction method remains
incomplete owing to the reasons discussed above.

Problems with analysis of the Golden spike experiment related
to nonuniform distributions of null p values48 and “unusual”
feature characteristics (such as unrealistic high spike concentra-
tions and high percentage of spikes)49 raise doubts about the
adequacy of the design of this benchmark experiment. It has,
however, been demonstrated that problems with statistical null
hypotheses are related to inadequate normalization of intensity
data and can be avoided using improved methods.50,51 Such
intuitive approaches use filtering of the raw signals,38 renor-
malization of expression values,50,51 and probe-level mixture
models.36 In agreement with our normalization rule (b), nor-
malization based on invariant expressed probes provides best
results.51,50

Our study reveals the up-down effect as the rationale behind
these heuristic approaches. On the basis of the proposed
hybridization model we are able to explain and to quantify the
observed effects and to propose simple rules for proper
normalization of the data. Moreover, we show that the underly-
ing up-down effect is not specific to the Golden spike
experiment. Instead, it represents an inherent property of
microarray hybridizations which has been unambiguously
identified in another four benchmark studies. These experiments
of unbalanced expression changes thus provide valuable data
for studying the hybridization physics beyond the concentration
dependence of the intensity addressed by the balanced expres-
sion changes of the Latin-square design. Despite some contro-
versial discussion about possible flaws of a particular benchmark
study, there is consensus about the demand in benchmark data
addressing different aspects of microarray technology.18,49,48

The relevance of the up-down effect for biological data will
be addressed in our forthcoming research. Unbalanced expres-
sion changes in large-scale knockout studies and/or chip-to-

chip variations of the RNA amount in samples of different
biological origin (e.g., different tissue types or developmental
stages in time course studies) are potential candidates for the
up-down effect with consequences for expression analysis. In
a recent publication, preliminary results were presented which
clearly demonstrate the presence of the up-down effect in
samples of different RNA quality.13

Probe-Specific Up-Down Effect. This paper addresses the
up-down effect at the chip level, i.e., the variation of the mean
specific binding constant, averaged over all probes on the chip,
upon variation of the mean nonspecific background level.
However, at the probe level, both the specific binding constant
and the nonspecific background level are highly dependent on
particular probe and target sequences.9 Accordingly, eq 2 applies
to each probe in a sequence specific manner, where, for example,
a large propensity for folding and/or bulk dimerization is
accompanied by a corresponding reduction in the effective
binding constant for the particular probe. This probe-level
up-down effect has previously been demonstrated at the
individual probe level and explained by physical models.52,53,8

One can formally decompose the probe-specific binding
constants into the mean chip contribution (K ≡ Kc) and a probe-
specific incremental term

The former value is given by eq 2 whereas the latter term can
be approximated in analogy with eq 26 by

where the increment now refers to the sequence effect. Accord-
ingly, the incremental term changes linearly with the background
level between the limiting values

The hook methods uses the position-dependent sensitivity model
for correction of sequence-specific effects of the probe intensi-
ties. It approximates the increments of the binding constants
by the sum

with the constraints 〈δp log Kh〉all p ) 0 and ∑B)A,T,G,C σk
h(B) )

0. In eq 32, Bpk denotes the nucleotide letter at sequence position
k of probe p. For the sake of simplicity we consider here a
single-base model for the sensitivities σk

h, whereas in general
the hook method uses a nearest-neighbor or even next-nearest-
neighbor sensitivity model as standard. Comparison of eq 32
with eq 30 shows that the sensitivity terms can be decomposed
in an analogous fashion into a weighted sum of reaction-related
base and position-dependent terms

log Kp ) log K + δp log K (29)

δp log Kh|[h])const ) δp log KP-h - (�Nδp log KN-N +

(1 - �N)fN-foldδp log KN-fold + fP-foldδp log KP-fold) (30)

δp log Kh ) δp log KP-h - fP-foldδp log KP-fold -

{ fN-foldδplog KN-fold
for �N ) 0

δp log KN-N
for �N ) 1

(31)

δp log Kh ) ∑
k)1

25

σk
h(Bpk) (32)
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The sensitivity terms on the right side of this equation and the
fractions of the folding constants are virtually constant for a
given ensemble of probes and targets. On the one hand, one
expects a certain degree of similarity between the reaction-
related profiles owing to the underlying common base-pair
interactions. On the other hand, reaction-specific differences,
e.g., between folding and duplexing, are expected to cause subtle
differences between the profiles. Their different scaling upon
changing background contribution �N is also expected to vary
the total profiles σk

h(B). This prediction has been confirmed
theoretically:54 the profiles referring to different nucleotides scale
mutually relative to one another depending on whether or not
one considers bulk hybridization.

Figure 14 compares the total sensitivity profiles taken from
selected chips of the considered benchmark experiments at
different background levels. In general, the profiles are also
sensitive to other factors such as the optical background
correction, and saturation.45,54 To minimize these effects, we
selected the profiles of nonspecifically hybridized probes (h )
N) and used the standard Affymetrix zone algorithm for optical
background correction in all cases.25

The data show that the observed effect is small (dilution
experiment) or moderate (Golden spike and RNA spike). The
negligible effect in the DNA-spike experiment is not surprising
given that the background level remains essentially invariant
after treatment (see above). Although there is no unique trend
in the other examples, the observed changes give rise to the
conclusion that nonspecific background hybridization modifies
probe/target binding in a probe specific fashion. The correction
for this effect consequently requires a sample-specific approach
which takes into account subtle differences due to changing bulk
hybridization.

5. Summary and Conclusions

Microarray expression measures are scaled by unwanted
nonspecific hybridization through an effect we refer to as the
up-down effect. In this effect, changes in the nonspecific
background component of total RNA target induce an opposite
sign change in the effective specific binding constant. The effect
can equivalently be seen as a variation in each probe’s sensitivity
to specific transcript concentration, defined as the increment in
a probe’s intensity response per unit increment in specific target
concentration. Because the total RNA background changes from
chip to chip, owing to technical and/or biological reasons, a

Figure 14. Position-dependent single-base sensitivity profiles of samples of different nonspecific background levels taken from different benchmark
experiments. Compare the solid with the dotted curves.

σk
h(B) ) σk

P-h(B) - (�Nσk
N-N(B) +

(1 - �N)fN-foldσk
N-fold(B) + fP-foldσk

P-fold(B)) (33)
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normalization which corrects for the up-down effect is needed.
In this paper we have proposed a set of special rules for this
purpose.

In short, our normalization relies on leveling expression values
obtained from the proven hook method. Only probes known to
be invariantly expressed are used in the leveling process. By
comparison, existing heuristic normalization techniques are
biased by a number of shortcomings including failure to exclude
absent (i.e., nonexpressed) probes, leveling raw fluorescence
intensities rather than more appropriate expression values, and
using low-variance criteria for identifying invariant sets.

The rationale behind the up-down effect is recognition of
the subtle interplay of competing interactions between the probes
and specific and nonspecific targets at the chip surface and in
bulk solution, which can be understood in the framework of
equilibrium thermodynamics. The results emphasize the impor-
tance of physicochemical approaches to improving microarray
data analysis. Our next tasks include the conversion of the
normalization rules into practical algorithms and their verifica-
tion and application in the context of quantitative microarray
analyses, for example, of wide-scale knockout studies or tissue
comparisons.
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