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Abstract

We address the problem of detection and correction of spatial flaws in oligonucleotide mi-
croarrays. We present two similar procedures, of which one is intended solely for use with repli-
cates and the other has wider applicability. By constructing a set of replicates, with one realistically
flawed, we are able to examine the extent to which our procedures are capable of repairing the flaw.
We find that, for this purpose, our procedures are superior to the existing ‘Harshlight’ procedure.
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1 Introduction

Oligonucleotide microarrays are widely used to provide information about gene
expression. Each microarray provides information in the form of measured light
intensities at upwards of half a million locations (arranged on a square grid) on the
array surface. Each location corresponds to a probe (a sequence of 25 bases) pro-
viding information about a designated gene. The design comprises pairs of “perfect
match” (PM) and “mismatch” (MM) probes that differ only in their central base.
The intention of the chip manufacturers was that each MM probe would provide
a measure of the background value resulting from the outer 24bases, so that the
difference between the PM and MM expression values would provide information
concerning the extent of the occurrence of a particular gene. For each gene there is
at least one probe set, with (typically) from 11 to 20 probes in a set. The individual
values in a probe set are then converted into a single expression value for the gene
using one of a number of algorithms (e.g. RMA; Irizarryet al. (2003b)). Although
these algorithms use robust statistical procedures, and are generally very effective
in recovering the signal (Copeet al., 2004), they make no reference to values in
other probe sets.

We believe that, to some degree, every oligonucleotide array contains spatial
flaws. The most common flaws appear to be the consequence of trapped bubbles
and are manifested as rings or arcs (Suárez-Farinaset al., 2005a). These are usu-
ally seen towards a side of an array (Langdonet al., 2008). Irregular shaped blobs
may also be found, as are occasional ‘scratches’(Upton and Lloyd, 2005). How-
ever, standardization algorithms such as quantile scalingdo not consider the spatial
locations of the values that they process.

In this paper we show that the spatial compactness of flaws canbe exploited
to provide the basis for corrections that are quite independent of any subsequent
chip-wide correction procedure (such as quantile scaling). The methods that we
propose involve the comparison of the expression levels of aprobe across a number
of arrays. The methods will be most effective when the expression levels should be
identical (as in technical replicates). They should be nearly as effective when the
expression levels are affected only by slight individual variations (as in biological
replicates). However, one method can be used when comparingunrelated arrays.

In Section 2 we illustrate the flaws found in examples of replicate arrays and
in unrelated arrays. In Section 3 we briefly describe some previously suggested
correction routines while, in Section 4, we present two new correction procedures,
one suitable for any group of arrays and one suitable only forreplicates. In Section
5 we create artificial replicates and present results for these and other arrays in
Section 6.
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2 Visualising spatial flaws

With three or more arrays (which need not be replicates), visualization of defects is
a simple matter. WithLklr denoting the logarithm of the signal intensity at location
(k, l) in arrayr, an effective procedure involves calculating and plottingthe values
of dklr given by:

dklr = Lklr −Mkl(1)

whereMkl is the logarithm of a reference value for location(k, l). Comparing eight
arrays from the Affymetrix HG-U95 Spike-in dataset, Cheng and Li (2005) choose
the values in one arbitrarily chosen array to be the set of reference values. Study-
ing two-color arrays Reimers and Weinstein (2005) use the average values (across
replicates) in each pixel as the reference values. We recommend using a more robust
comparator such as the median value, as used by Suárez-Farinaset al. (2005a).

To show the potential sizes and forms of spatial defects, we have chosen three
different array types downloaded from the Gene Expression Omnibus (GEO) (avail-
able at http://www.ncbi.nlm.nih.gov/geo/). To visualizethe flaws we have identified
cells in the array for which|edklr −1| > 0.25 — in other words, those cells that dif-
fer by more than 25% of the median array value in that location. Not all cells so
identified will correspond to flaws, since there will be many cells whose unusual
magnitude is a result of a biological signal. However, thesegenuinely interesting
cells will not be spatially clustered.

Figure 1 shows the flaws found in four biological replicates (GSM149276-9) of
the Affymetrix GeneChip Drosophila Genome Array DrosGenome1 (GEO number
GSE6515) (see Magalhãeset al. (2007) for a description of the data context). There
are a number of irregular dark blobs (concentrations of low values) visible in nearly
every bottom row, while GSM149276 has a small region of high values in the top
right corner and GSM149277 has many high values.
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Figure 1: Spatial flaws in four replicates of the GSE6515 experiment hybridized in
DrosGenome1 arrays. The upper row shows the locations of unusually large values and
the lower row the locations of unusually small values. In each case ‘unusually’ implies
cells that differ by more than 25% of the median array value inthat location.

Figure 2 refers to three biological replicates (GSM29929, 29930 and 29932)
of the Affymetrix GeneChip Yeast Genome S98 Array YG-S98 (GEO number
GSE1723) (see Taiet al. (2005) for a description of the data context). Replicate
GSM29929 has an extensive region of low values to the left of center as well as
other prominent regions of unusually low values. GSM29930 has diffuse regions of
high values. GSM29932 has unusually low values towards the bottom of the array.

Figure 2: Three replicates of the GSE1723 experiment hybridized in YG-S98 arrays;
interpretation as for Figure 1.

Figure 3 displays results for the three technical replicates of the second of the
fourteen hybridizations of the Affymetrix Latin Square experiment (see http://www.
affymetrix.com) utilizing the GeneChip Human Genome HG-U133A.
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Figure 3: Spatial flaws in three technical replicates of the spiked GeneChip Human
Genome U133A arrays; interpretation as for Figure 1.

The first replicate shows “finger prints” corresponding to compact regions of
low values, whilst the low values in the second replicate resemble “coffee rings”.
Isolated high regions appear in the top right of the first replicate and there are left-
right high-value linear features in the third replicate.

Figure 4:Spatial flaws uncovered by comparison of three unrelated arrays; interpretation
as for Figure 1.

The same approach can be used without replicates, providingthat information
from several arrays of the same type is available. As an example Figure 4 shows the
result of comparing the yeast array GSM29929 (see Figure 2) with yeast arrays from
two entirely unrelated experiments: GSM34758 from experiment GSE1938 (see
Pitkänenet al. (2004) for details) and GSM67551 from experiment GSE3076 (see
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Guan,et al. (2006)). The flaws in GSM29929 that were very obvious in Figure 2 are
still apparent (though they are much less apparent). The twocomparator arrays were
chosen essentially randomly, and it is apparent that both have features involving
high values (a single part row in GSM34758) and ‘tyre marks’ in GSM67551.

3 Existing adjustment procedures

We believe that nearly all arrays contain some spatial defects (Langdonet al., 2008),
though these are often confined to very small regions. We now give very brief
descriptions of some procedures that have been suggested for dealing with defects.

3.1 Reimers-Weinstein

Reimers and Weinstein (2005) detected spatial flaws by comparing the values in
an array with the corresponding trimmed mean values from a collection of arrays.
Having detected flaws their counsel was to either reject the array, or to reject the
affected probes.

3.2 Upton-Lloyd

Upton and Lloyd (2005) suggested subtracting from each cellin the array the small-
est neighbouring value found in a(2m + 1)× (2m + 1) window. With smallm
this procedure corrects the background intensity levels and removes the majority
of spatial flaws. However, the procedure fails because it often distorts the data by
choosing as a reference value a neighbour with a genuinely large value.

3.3 Harshlight

The Harshlight package (Suárez-Farinaset al. (2005b)) is a tool (freely available in
Bioconductor) for the identification and correction of spatial biases in microarrays.
The procedure works with the logarithms of the ratio of the value in a chip to the
corresponding median value. The variability of these ratios is then decomposed into
expected background noise and a probe-specific contribution. By examining the
locations where large probe-specific contributions exist,the Harshlight procedure
provides summaries of the proportions of an array that contain so-called Compact,
Diffuse, and Extended defects. The user specifies whether flawed values should be
replaced with ‘N/A’ (Not Available) or with the median valueof the replicates at
that location.
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3.4 caCORRECT

The caCORRECT scheme introduced by Stokeset al (2007) is intended for use
when there is data available from many arrays. Each probe is normalized by ref-
erence to the variance and standard deviation of the other probes in that position,
and the normalized values are visualised as ‘heatmaps’. Users are invited to make
their own choices of probes to be corrected, or to use an inbuilt ‘batch mode’. The
corrections to be made are left to the user, with substitution of the mean or median
probe value suggested as possibilities. Their own choice would be “to not replace
data in any way” but simply to ignore data beieved to be incorrect.

4 The new adjustment routines

We now introduce two related adjustment procedures that seek to use information
about the extent and magnitude of a flaw to produce a revised value that remains
unrelated to the other values at that array location.

A seriously flawed value will lead to an extremed-value, and Figures 1 to 3
indicated thatd is a useful statistic. However, since the magnitudes of the PM-
values are often very different to those of the MM-values, the magnitudes of the
d-values for the PM-probes may have a different scale to thoseof the d-values
for the MM-probes. The new adjustment routines usestandardized d-values,d∗

klr,
given by:

d∗
klr =

dklr

Skl
(2)

whereSkl is the standard deviation of theLklr values.
We propose two different adjustment routines which can be used separately or in

sequence. Both routines work by comparing values across three or more arrays and
assume that, at any specific location, at most one of the arrays being compared will
be flawed. This is reasonable since Langdonet al. (2008) report that, for most array
types spatial flaws affect between 1% and 3% of cells, while studies using repli-
cates rarely involve more than three replicate arrays. However, in the (hopefully)
rare instance where an instrument malfunction results in identical errors across all
arrays, the methods described below would fail to detect theproblem.

4.1 Local probe effect (LPE) adjustment

This adjustment can be used whenever multiple arrays (whichneed not be any type
of replicates) are available. It uses the entire spatial structure in the region imme-
diately surrounding a probe to decide whether adjustment should take place. If the
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decision is that a cell should be scaled, then the procedure begins with the calcula-
tion of thed-values using Equation (1). To explain the LPE procedure we begin by
defining the quantitiesIkl andGkl as follows:

Ikl The identifier of the array corresponding to the case wheredklr takes its
largest absolute value.

Gkl This takes the value 1 if thed-value with the largest magnitude (at this
location) was positive, and is otherwise equal to−1.

Using these two quantities, define the codeEkl by:

Ekl = Ikl ×Gkl(3)

so that, withR arrays,Ekl takes one of the values{−R,−(R−1), ...,−2,−1,
1,2, ...,(R−1),R}. In an area with no spatial flaws, a location will be equally likely
to be associated with any of these 2R possible codes.

To determine whether a flaw affects location(k, l), we consider the codes of
the informative locations in the 5×5 window centered on this location. Here, we
use the terminformative locations to mean locations containing either a PM or
MM probe (as opposed to locations used for quality control orlocations outside
the array). If the window contains an unusually large numberof locations having
the same code, then we conclude that this is due to a spatial flaw. If a majority
of the informative locations display the sameE-value, (corresponding to arrayr,
say) then we consider adjusting the value in cell(k, l,r). Note that theE-value for
the central location need not be the majority value. The probability of making the
adjustment as a result of a chance arrangement ofE-values depends on the number
of informative cells,N, and the number of arrays,R. This is a binomial situation
with parametersN and 1/2R, with the probability of interest being the probability
of a value greater thanN/2. For the caseN = 24 (omitting the central square of the
window),withR = 3, this probability is about 3×10−5.

With arrayr identified for correction, letZ be the subset of theN informative
locations within the window. For each location inZ calculate thed∗-values for array
r using Equations (1) and (2), and let̄d∗ be their average. This value will be used to
correct the original value in location(k, l,r) providing the signs ofd̄∗ andd∗

klr are
the same. If this is not the case then the value will be left unadjusted. Working with
logarithms, the adjusted value,La

klr, is given by

La
klr = Lklr −Skl d̄

∗(4)

where, as before,Skl is the standard deviation of theLklr values.
The procedure will work best with biological or technical replicates, but, if it

were suspected that all replicates were affected by a similar error, then it could be
used (albeit with reduced efficiency, because of the presence of different biological
signals in the different arrays) with unrelated arrays.
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4.2 Complementary probe pair (CPP) adjustment

This adjustment is only suitable for use with replicates andrelies upon the fact that
each PM probe is situated directly beside its matching MM probe. The assumption
is that, because the probes are adjacent, any spatial flaw that affects one of the pair
will also affect the other member of the pair. For this adjustment routine each (PM,
MM) pair is treated separately and, withR arrays being compared, it results in at
most one of theR PM-values being altered, and at most one of theR MM-values
being altered.

Suppose that cells(k, l) and (k, l + 1) are the locations of the PM and MM
probes, respectively. UsingMkl, the median of theR PM-values at cell(k, l), the
values ofd∗

kl1,d
∗
kl2, . . . ,d

∗
klR are determined using Equations (1) and (2). Thed∗-

values are also calculated for the neighboring MM probes. The array in need of
correction is indicated by thed∗-value with the greatest absolute magnitude, though
correction only takes place if bothd∗-values for that array have the same sign (in-
dicating that both members of the (PM, MM) pair are unusuallylarge, or unusually
small, compared to the corresponding values in the other arrays).

Suppose that the values in arrayr have been identified for correction. Denote
the logarithms of the adjusted values in locations(k, l) and (k, l + 1) by La

klr and
La

k(l+1)r, respectively. The adjustment at cell(k, l) is calculated from theR initial
values at location(k, l + 1) and the adjustment at cell(k, l + 1) is calculated from
the initial values at location(k, l). The revised values are given by:

La
klr = Lklr +

Skl

Sk(l+1)
(Mk(l+1)−Lk(l+1)r)(5)

La
k(l+1)r = Lk(l+1)r +

Sk(l+1)

Skl
(Mkl −Lklr)(6)

In each equation the bracketed term quantifies (on a logarithmic scale) the dif-
ference between the value in arrayr and the typical (i.e. median) value. Even on a
logarithmic scale the variability of PM-values at a location is not the same as that
of the corresponding MM-values, so that the difference is scaled up (or down) to
match the scale of the data to which it is being applied.

4.3 Example of the adjustments

Table 1(a) shows a typical set of paired PM and MM values for a case whereR = 3.
Table 1(b) shows their natural logarithms from which we determine the median
valuesMkl = 4.93 andMk(l+1) = 4.61, and the standard deviationsSkl = 0.18, and
Sk(l+1) = 0.10. Using Equations (1) and (2) leads to thed∗-values in Table 1(c); for
example,d∗

kl1 = (5.11−4.93)/0.18= 1.01.
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Table 1: Example of the adjustment of PM and MM values. (a) The observed values
(R = 3). (b) The logarithm of the observed valuesLklr. (c) The correspondingd∗-values.
(d) The adjusted values.

Array Array
1 2 3 1 2 3

(a) Observed values (b) Lklr values
PM 165 116 138 5.11 4.75 4.93
MM 114 94 101 4.74 4.54 4.61

(c) d∗-values (d) Adjusted values
PM 1.01 -0.99 0 132 116 138
MM 1.26 -0.72 0 103 94 101

Thed∗-value with the greatest absolute magnitude is in array 1. Since bothd∗

values in this array have the same sign, an adjustment is made. Since thed∗-values
are positive, the adjustment results in reduced values for array 1. These are shown
in Table 1(d) where, for example,

132= exp

{

5.11+
0.18
0.10

(4.61−4.74)

}

Table 2(a) gives theE-values for the 5×5 array centered on the probe consid-
ered in Table 1. Table 1 (c) demonstrated that the largest absoluted∗ value was in
array 1, and was positive, so that the central value is shown as 1. However, it is not
the value in replicate 1 that is adjusted downwards, but the value in replicate 2 that
is adjusted upwards. This is because the majority of E-values in the table are “-2”,
indicating low values in array 2. Table 2 (b) shows the correspondingd∗ values.

The average of the 19d∗-values,d̄∗, is−1.45. We have seen that thed∗-value
for the central cell in array 2 has the same sign, so that the adjustment can be made.
The revised value is:

La
kl2 = ln(116)− (0.18)(−1.45) = 5.01.

Exponentiating gives a revised value of 150 for the value in array 2 (compared with
the original 116 and the values in the other arrays of 165 and 138).

4.4 Combining adjustment routines

Note that, since the transformation has the effect of movingan extreme towards
the median, it is always the case that the adjusted values areless variable than the
original values.
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Table 2:Example of the adjustment of a probe. (a) TheE-values for a 5×5 window. (b)
Thed∗-values for the locations affected by the spatial bias.

-2 -2 -2 -2 -2
-2 -2 -2 -2 -2

(a) E-values -1 -2 1 1 1
2 -2 -2 -2 -2
3 -2 -2 -2 -2

-1.41 -1.48 -1.53 -1.49 -1.42
-1.69 -1.57 -1.62 -1.14 -1.15

(b) d∗-values -1.72
-1.38 -1.65 -1.32 -1.04
-1.27 -1.49 -1.61 -1.59

At every pair of (PM, MM) locations, the values in one of theR arrays will be
adjusted providing the sign of thed∗ value for the PM cell in the identified array is
the same as the sign for the MM cell in that array. If there are no spatial flaws, then
the proportion of cells adjusted is approximately(R−1)/2R.

Although each adjustment routine uses values in the local neighborhood, their
definitions of neighborhoods are very different and this suggests that using the two
procedures in succession could be beneficial. In this section the arrays compared
are replicates since CPP is not appropriate for other arrays.

5 Creation of test replicates

In order to demonstrate that the methods correctly identifyflawed cells and make
appropriate corrections, we create a realistic set of replicate arrays, in which one
has known spatial flaws. To obtain realistic flaws, we used theresults from the
analysis (reported later) of the Human Genome U133 arrays from the Latin Square
Experiment. WritingL as the logarithm of the original value in the first (left-hand)
array of those illustrated in Figure 3 and withLa as the logarithm of the adjusted
value, we calculated error arrayE, with elements{Ekl} defined by

Ekl = Lkl −La
kl .(7)

There are four stages in our construction of a set of test replicates:

1. We chose (arbitrarily) the first replicate of the third of the hybridization sets of
Human Genome U133A Latin Square experiment as our base array, A, and
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denote the log-expression measurements for this array by{Akl}. We work
with three copies of this array, denoted asB1, B2 andB3.

2. We now incorporated both additive and multiplicative random errors to the
arrays in a manner suggested by the model of Durbin and Rocke (2003):

Lkl = log(b+ µeηkl + εkl)(8)

whereb is the background intensity,µ is an expression intensity, and the
{η} and{ε} are random errors. The additive errorε ∼ N(0,σε) reflects the
variability of the background, and the multiplicative error η ∼ N(0,ση) rep-
resents the proportional errors most noticeable with highly expressed genes.

Durbin and Rocke (2003) provide a method for estimatingση andσε using
replicate arrays. Using this method we estimated the valuesof ση andσε for
five sets of Human Genome U133A replicates from the same LatinSquare
experiment (chosen at random, but excluding the set analyzed in Section 3).
The medians of these five estimates wereση = 0.076 andσε = 3.235 and it is
these median values that we used to generate the normally distributed random
errors for each cell of the arraysB1, B2 andB3.

3. Replicates vary somewhat in their average intensities. Based on our analysis
of the five sets of U133A replicates studies at stage 2, we revised the values
in B2 by multiplying each by 1.027 and the values inB3 by multiplying each
by 0.973.

4. As a final stage the error matrixE was added toB1. This new array containing
the spatial flaws will be denoted asC1. We create arraysC2 and C3 by
copying arraysB2 andB3, respectively.

6 Results

6.1 The Harshlight test

The Harshlight package analyzes a set of replicate arrays and produces a report
with details about the types of flaws found (described as ‘Extended’, ‘Compact’
or ‘Diffuse’). In the tables that follow ‘HMS’ refers to the substitution of flawed
values by the median value of the replicates at that location.

Table 3 shows the percentages of spatial defects reported byHarshlight for
the four arrays of the GSE6515 experiment used in Figure 1 (where, for exam-
ple, ‘CPP+LPE’ means one application of the CPP procedure isfollowed by one
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Table 3: Percentages of defects reported by the Harshlight package for four Drosophila
arrays (see Figure 1).

Array 1 2 3 4
E C D E C D E C D E C D

Original 15.6 0.6 0.3 4.5 0.7 2.3 4.3 0.4 1.0 1.2 0.5 1.2
CPP 0.7 0 0 2.4 0 1.5 2.9 0 0.4 0.3 0 0
LPE 1.2 0 0 3.8 0.1 1.8 4.0 0 0.8 0.3 0.1 0.9

CPP+LPE 0.7 0 0 2.3 0 1.5 2.8 0 0.4 0.3 0 0
LPE+CPP 0.5 0 0 2.1 0 0.3 2.6 0 0.4 0.1 0 0

HMS 18.2 0 0 6.6 0 0 4.3 0 0.8 0.8 0.1 0.4
HMS twice 18.2 0 0 6.7 0 0 4.4 0 0 0.8 0 0
HMS thrice 18.2 0 0 6.7 0 0 4.4 0 0 0.8 0 0

of the LPE procedure). The Table shows the percentages for the original data, for
the spatial normalized data using the procedures presentedin this work, and for the
data normalized with HMS (applied once, twice, or thrice). Originally the repli-
cates have as many as 16.5% of locations that are subject to spatial flaws. This is
reduced to less than 6% by the use of LPE and to less than 3% whenboth proce-
dures are used. The HMS procedure is much less effective: in three cases it results
in an increase in the proportion of cells that are judged to bepart of an Extended
defect. It is also noteworthy that using HMS repeatedly doesnot help matters.

The most effective combination is LPE followed by CPP. This is logistically
convenient, since, while LPE can be used with any group of arrays, CPP can only
safely be used with replicates. Our LPE+CPP algorithm is therefore informed by
the user as to whether it is appropriate to carry out the CPP procedure.

Table 4:Percentages of defects as reported by the Harshlight package for: (a) three Yeast
arrays (see Figure 2); and (b) three spiked HGU133A arrays (see Figure 3).

Array 1 2 3
E C D E C D E C D

(a) Original 15.1 0.2 9.0 5.8 0.4 5.1 2.3 0.3 6.7
LPE+CPP 0.6 0.2 1.0 0.4 0.1 1.9 0.1 0.1 3.7

HMS thrice 6.8 0 0 6.9 0 0 3.0 0 0
(b) Original 5.0 0 10.0 5.0 0.3 1.6 2.6 0 3.1

LPE+CPP 0 0 1.0 0 0 0.6 0 0 0
HMS thrice 0.2 0 0 1.7 0 0 2.0 0 0
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The analysis presented in Table 3 was repeated for the arraysillustrated in Fig-
ures 2 and 3 with confirmatory results (see Table 4). We also applied LPE to the
three (non-replicate) yeast arrays with the results shown in Figure 5: little trace
remains of the distinctive features seen previously.

Figure 5:Spatial flaws remaining in the three yeast arrays. The layoutis as in Figure 2.

6.2 Performance with known flaws

Table 5:Results of applying the LPE+CPP or HMS (twice) corrections to three simulated
arrays, with array 1 containing flaws.

Cell % of these cells Initial(C−B) Final(D−B)
type Revision adjusted Mean RMSE Mean RMSE

Array C1

Flawed LPE+CPP 100%
−0.056 0.159

−0.023 0.117
HMS(twice) 100% −0.035 0.137

Not LPE+CPP 10%
0 0

0.004 0.120
Flawed HMS(twice) 4% 0.002 0.113

ArraysC2 andC3

Not LPE+CPP 13 %
0 0

−0.005 0.133
Flawed HMS(twice) 0.3 % −0.034 0.134

We applied the LPE+CPP procedure and the HMS procedure twice(since LPE+
CPP is a combined adjustment) to the arraysC1, C2 andC3 to obtain corrected ar-
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raysD1, D2 andD3. If the corrections were perfect then each of these would equal
the initial arrayA, with D1−C1 = E. However, since both additive and multi-
plicative errors have been introduced, exact equality willnot be achieved. Table 5
summarizes the results of applying both adjustments. To estimate the amount of
bias remaining in the arrays after any correction method theRoot Mean Squared
Error (RMSE) was used.

In arrayC1 24% of the locations were contaminated with spatial flaws, all of
which were adjusted by both procedures. The table shows thatusing LPE+CPP
resulted in the mean bias being reduced by 58% with the RMSE being reduced by
26%. Applying HMS(twice) was less effective (the reductions were by 38% and
14%, respectively).

Table 5 also shows that LPE+CPP adjusted far more of the cellsaffected only
by random noise (see, especially, the results for arraysC2 andC3). That this is not
a bad thing is born out by the final column of the table which demonstrates that the
net effect was a set of values that better resembled the values prior to the addition
of noise.

6.3 Testing using Affycomp

To show the effect of our normalization procedure in gene expression measure-
ments and that the effects of probe level artifact correction persist through probeset
summary, the comparison tool Affycomp (Copeet al. (2004)) (available as part
of Bioconductor) will be used. This package contains a set ofgraphical tools for
summaries of Affymetrix probe level data. Using the plots available in Affycomp,
a comparison of expression measurements with different summarization methods
can be obtained.

The microarray data used for these comparisons were the spiked-in arrays that
formed part of the Latin Square experiment using Human Genome U133A chips
made publicly available by Affymetrix. The fourteen hybridization sets were sep-
arately pre-processed with HMS(twice) or with LPE+CPP and then summarized
with the popular algorithm RMA (Irizarryet al. (2003b)) (using the suggested de-
fault setting).

Figure 6 shows the Receiver Operator Curves (ROC) generatedby Affycomp for
the SpikeIn133A dataset (with 2-fold changes) summarizingthe true positive/false
positive behavior of the data summarized with RMA. By reducing the noise in the
system, the fold-changes between the pairs of fold-change replicates should be-
come more apparent. Thus, when all the genes are arranged in order of apparent
fold change their expression level, we would expect the genuine changes due to
the spike-ins to become more apparent (i.e. to appear higherin the ordered list),
whereas the artificial changes of magnitude due to random variation and spatial
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Figure 6:ROC Curves for the SpikeIn133A dataset at 2-fold changes using RMA.
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artifacts should be reduced in size and should move down the ordered list.

Table 6:Changes in ranking of the genes in the spike-in experiment, following correction
with either Harshlight or LPE+CPP

Harshlight (twice) LPE+CPP
Increased DecreasedIncreased Decreased

rank rank rank rank
Spike-ins 36.5% 33.3% 45.7% 38.6%
Others 50.5% 49.4% 50.3% 49.7%

Table 6 compares the results of using Harshlight (twice) with those obtained us-
ing LPE+CPP. With both procedures the effect of removing spatial artifacts reduces
the ranks of some genes very considerably with the result that more genes have
an increased ranking than have a decreased ranking. This is most marked for the
LPE+CPP procedure and the spike-in genes, reflecting the improved performance
seen in Figure 6.
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7 Summary and discussion

We have presented two procedures that are very effective at identifying and cor-
recting spatial flaws in oligonucleotide microarrays. The CPP procedure is only
appropriate with replicates, but the LPE procedure can be used with any group of
arrays (though, of course, it will be most effective with replicates). We employed
the LPE procedure on the trio of unrelated arrays shown in Figure 4. In all 22%
of cells received an adjustment. As one would anticipate, the flawed areas were
largely removed, though the picture remained very noisy (reflecting the genuine
differences between the experimental situations).

In correcting any particular cell, neither adjustment usesinformation from that
cell in the comparator arrays. We have compared the performance of our procedures
with that of the Harshlight package (Suárez-Farinaset al. (2005b)) and found our
new procedures to be more effective.

References

Cheng, C. and Li, L. M. (2005) Sub-array normalization subject to differentiation.
Nucleic Acids Res., 33, 5565-5573.

Cope, L. M., Irizarry, R. A., Jaffee, H. A., Wu, Z., Speed, T. P. (2004). A benchmark
for Affymetrix GeneChip expression measures.Bioinformatics, 20(3), 323-331

Durbin, B. and Rocke, D. M. (2003) Estimation of transformation parameters for
microarray data.Bioinformatics, 19, 1360-1367.

Guan, Q., Zheng, W., Tang, S., Liu, X., Zinkel, R., Tsui, K-W., Yandell, B. S.,
Culbertson, M. R. (2006) Impact of Nonsense-Mediated mRNA Decay on the
Global Expression Profile of Budding Yeast. PLoS Genet.;2 (11), e203.

Ekstrøm, C. T., Bak, S. and Rudemo, M. (2005) Pixel-level signal modelling with
spatial correlation for two-colour microarrays.Stat. Applic. Gen. Mol. Biol., 4,
1-14.

Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B. and Speed, T.
P. (2003b) Summaries of Affymetrix GeneChip probe level data, Nucleic Acids
Res., 31, e15.

Kim, K., Page, G. P., Beasley, T. M., Barnes, S., Scheirer, K.E. and Allison, D.
B. (2006) A proposed metric for assessing the measurement quality of individual
microarrays.BMC Bioinformatics, 7, 35.

16

Statistical Applications in Genetics and Molecular Biology, Vol. 7 [2008], Iss. 1, Art. 29

http://www.bepress.com/sagmb/vol7/iss1/art29
DOI: 10.2202/1544-6115.1383



Langdon, W. B., Upton, G. J. G., da Silva Camargo, R. and Harrison, A. P. (2008) A
Survey of Spatial Defects in Homo Sapiens Affymetrix GeneChips, IEEE/ACM
Transactions on Computational Biology and Bioinformatics, submitted.

Li, C. and Wong, W. H. (2001) Model-based analysis of oligonucleotide arrays:
Expression index computation and outlier detection.Proc. Natl. Acad. Sci. 98,
31-36.
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